| 研究生: |
杜守虢 Tu, Shou-Guo |
|---|---|
| 論文名稱: |
創新改良黏性骨: 複合再生基質之生物與機械特性研究 Biomechanical and biological properties of a composite regenerative matrix: an innovative modification of sticky bone |
| 指導教授: |
陳畊仲
Cheng, Ken-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 黏性骨 、富含血小板纖維蛋白 、自體纖維膠 、複合再生基質 、氫氧基磷灰石 、MG-63 、骨再生 、生長因子 、抗壓強度 、孔隙率 |
| 外文關鍵詞: | sticky bone, platelet-rich fibrin (PRF), autologous fibrin glue (AFG), composite regenerative matrix (CRM), hydroxyapatite (HA), bone regeneration, mechanical properties |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導引骨再生為口腔顎面外科重建骨缺損之重要治療方式,臨床上多仰賴骨移植材料搭配再生膜與鈦網以維持再生空間。然而,近年文獻指出過度的細胞阻隔可能影響血管新生,且再生膜與鈦網本身仍存在暴露風險、需二次手術移除等臨床限制。富含血小板纖維蛋白所製備之黏性骨因兼具良好操作性、空間維持能力及生長因子釋放潛能,已被廣泛應用於骨缺損重建,並在部分情況下可不依賴再生膜而達成良好臨床效果。然而,現行黏性骨製備方式仍存在凝固時間較長、生長因子分布不均、力學性質受限等問題。
台灣齒列再生研究學會基於既有臨床成果,提出一種創新改良之黏性骨製備策略,稱為複合再生基質。此新創方法透過整合自體纖維蛋白原膠與固態富血小板纖維蛋白壓榨液中之凝血酶,並藉由多次混合與重塑步驟,使骨移植顆粒表面可均勻浸潤高濃度生長因子,同時避免傳統剪碎富血小板纖維蛋白所可能引發之纖維蛋白結構破壞,可以提升材料之凝固效率與結構穩定性。
現存的問題是:複合再生基質所號稱的優點僅是臨床結果與使用經驗所衍伸出的推測,未經基礎研究數據證實。
本研究之目的分為兩大目標:其一,分析固態富血小板纖維蛋白壓榨液、自體纖維蛋白原膠及其混合物的差異;其二,以基礎研究證實台灣齒列再生研究學會所提出之複合再生基質的優點。
材料與方法如下:自血液捐贈者採集靜脈血液,製成固態富血小板纖維蛋白壓榨液、自體纖維蛋白原膠並定量其凝血因子與生長因子,並測量自體纖維蛋白原膠與兩者的混合液的凝固時間與凝塊的抗壓強度。以三種作法製備出黏性骨並定量其生長因子、孔隙率與抗壓強度。以 MG-63 細胞評估三種黏性骨的細胞增生與細胞分化能力。
研究結果表明,固態富血小板纖維蛋白壓榨液富含凝血酶,自體纖維蛋白原膠富含纖維蛋白原與多種生長因子。固態富血小板纖維蛋白壓榨液可以加快凝固速度與凝塊的抗壓強度。複合再生基質可以提升骨粉的填充率以達到減少孔隙率,且抗壓強度也顯著高於其他製備方法;但在生長因子的釋放與細胞實驗中並沒有得到提升,反而是降低,顯示固態富血小板纖維蛋白壓榨液的加入可能導致所含的生長因子被稀釋。
總結來說,本研究闡明固態富血小板纖維蛋白壓榨液與自體纖維蛋白原膠的成分與交互作用效果,而複合再生基質的做法可以提升其機械性質,但是沒有提升其生物性質。
To overcome the limitations of existing bone graft materials in osteogenesis and mechanical stability, this study evaluated the biological and biomechanical performance of sticky bone, with particular emphasis on a novel formulation termed the Composite Regenerative Matrix (CRM). Three preparation strategies were systematically compared: a conventional method combining autologous fibrin glue (AFG) with hydroxyapatite (HA), an updated method incorporating fragmented platelet-rich fibrin (PRF) membranes, and the CRM approach produced by repeated kneading of AFG, PRF serum, and HA to induce multi-step fibrin network formation. Biochemical analyses demonstrated that AFG contained abundant fibrinogen and growth factors, whereas PRF serum exhibited significantly higher thrombin levels, contributing to accelerated coagulation and enhanced clot strength when combined with AFG. Mechanical testing and micro-computed tomography revealed that CRM achieved the highest compressive strength, the most homogeneous HA particle distribution, and a well-organized pore architecture among all groups. In vitro assays using MG-63 osteoblast-like cells confirmed the biocompatibility of all formulations, with CRM showing superior or comparable effects on cell proliferation, TGF-β1 secretion, and early osteogenic differentiation. Collectively, these findings indicate that while conventional and updated methods offer procedural simplicity and rapid moldability, respectively, CRM provides enhanced mechanical stability and structural integrity, making it particularly suitable for large bone defect reconstruction requiring sustained support.
1. Albrektsson, T. and C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur Spine J, 10 Suppl 2 (Suppl 2): S96–101, 2001.
2. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing, Organogenesis, 8 (4): 114–24, 2012.
3. Ivanova, N., et al., Types of Bone Substitutes and Their Application in Regenerative Medicine: A Systematic Review, J Funct Biomater, 16 (9): 2025.
4. Titsinides, S., G. Agrogiannis, and T. Karatzas, Bone grafting materials in dentoalveolar reconstruction: A comprehensive review, Jpn Dent Sci Rev, 55 (1): 26–32, 2019.
5. Wang, W. and K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact Mater, 2 (4): 224–247, 2017.
6. Li, M., et al., [Study on the correlation between the content of bone morphogenetic protein 2 in demineralized bone matrix and its osteogenic activity in vitro and in vivo], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 35 (5): 620–626, 2021.
7. Mroz, T.E., et al., Musculoskeletal allograft risks and recalls in the United States, J Am Acad Orthop Surg, 16 (10): 559–65, 2008.
8. Yang, L.S., et al., [Comparative study of processed autogenous tooth bone and xenogeneic bovine bone in repairing an alveolar bone defect], Hua Xi Kou Qiang Yi Xue Za Zhi, 36 (4): 372–377, 2018.
9. Jain, D. and D. Deepa, A comparative evaluation of freeze-dried bone allograft with and without bioabsorbable guided tissue regeneration membrane Healiguide ((R)) in the treatment of Grade II furcation defects: A clinical study, J Indian Soc Periodontol, 19 (6): 645–50, 2015.
10. Zhang, J., et al., Research Progress of Bone Grafting: A Comprehensive Review, Int J Nanomedicine, 20 (4729–4757, 2025.
11. Mondal, S., et al., Hydroxyapatite: A journey from biomaterials to advanced functional materials, Adv Colloid Interface Sci, 321 (103013, 2023.
12. Xie, H., et al., Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2, RSC Adv, 13 (33): 23010–23020, 2023.
13. Mo, X., et al., Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering, Int J Mol Sci, 24 (2): 2023.
14. Amiryaghoubi, N. and R. Jahanban Esfahlan, Applications of Hydroxyapatite-Based Polymeric Scaffolds in Bone Tissue Engineering: An Update, Adv Pharm Bull, 14 (4): 794–806, 2024.
15. Rodriguez, I.A., et al., Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy, Biomed Res Int, 2014 (392398, 2014.
16. de Lima Barbosa, R., et al., The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration-A Scoping Review of In Vitro Evidence, J Funct Biomater, 14 (10): 2023.
17. Moshiri, A. and A. Oryan, Role of platelet rich plasma in soft and hard connective tissue healing: An evidence based review from basic to clinical application, Hard Tissue, 2 (1): 6–6, 2013.
18. Ferrari, M., et al., A new technique for hemodilution, preparation of autologous platelet-rich plasma and intraoperative blood salvage in cardiac surgery, Int J Artif Organs, 10 (1): 47–50, 1987.
19. Moscicka, P. and A. Przylipiak, History of autologous platelet-rich plasma: A short review, J Cosmet Dermatol, 20 (9): 2712–2714, 2021.
20. Whitman, D.H., R.L. Berry, and D.M. Green, Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery, J Oral Maxillofac Surg, 55 (11): 1294–9, 1997.
21. Marx, R.E., et al., Platelet-rich plasma: Growth factor enhancement for bone grafts, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 85 (6): 638–46, 1998.
22. Goczyńska, P., J. Lasocka, and E. Lachert, Fibrin glues — the current state of knowledge, Journal of Transfusion Medicine, 14 (4): 214–224, 2021.
23. ÖZsaĞIr, Z.B. and M. Tunali, Injectable platelet-rich fibrin: a new material in medicine and dentistry, Mucosa, 3 (2): 27–33, 2020.
24. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e37–44, 2006.
25. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e45–50, 2006.
26. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e51–5, 2006.
27. Choukroun, J., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e56–60, 2006.
28. Ghanaati, S., et al., Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells, J Oral Implantol, 40 (6): 679–89, 2014.
29. Miron, R.J., et al., Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry?, Clin Oral Investig, 21 (8): 2619–2627, 2017.
30. Ezzatt, O.M., Autologous Platelet Concentrate Preparations in Dentistry, Biomedical Journal of Scientific & Technical Research, 8 (5): 2018.
31. Sohn, D.S., et al., Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone, Implant Dent, 20 (5): 389–95, 2011.
32. Rodella, L.F., et al., Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction, Microsc Res Tech, 74 (8): 772–7, 2011.
33. Qiao, J., N. An, and X. Ouyang, Quantification of growth factors in different platelet concentrates, Platelets, 28 (8): 774–778, 2017.
34. Honda, H., et al., Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model, J Artif Organs, 16 (3): 305–15, 2013.
35. Tunali, M., et al., In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate, Br J Oral Maxillofac Surg, 51 (5): 438–43, 2013.
36. Tunali, M., et al., A novel platelet concentrate: titanium-prepared platelet-rich fibrin, Biomed Res Int, 2014 (209548, 2014.
37. Ravi, S. and M. Santhanakrishnan, Mechanical, chemical, structural analysis and comparative release of PDGF-AA from L-PRF, A-PRF and T-PRF - an in vitro study, Biomater Res, 24 (16, 2020.
38. Miron, R.J., et al., A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields, Clin Oral Investig, 24 (8): 2819–2828, 2020.
39. Fujioka-Kobayashi, M., et al., Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols, Clin Oral Investig, 24 (12): 4373–4383, 2020.
40. Barros Mourão, C.d.A., et al., Characterization of a new membrane from concentrated growth factors associated with denaturized Albumin (Alb-CGF) for clinical applications: A preliminary study, International Journal of Growth Factors and Stem Cells in Dentistry, 1 (2): 2018.
41. Fujioka-Kobayashi, M., et al., Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF), Platelets, 32 (1): 74–81, 2021.
42. Hadziabdic, N., PRF and Sticky Bone as Regenerative Materials in Oral Surgery, in Craniofacial Surgery – Recent Advances, New Perspectives and Applications. 2022, IntechOpen: London. p. 1–26.
43. Yamaguchi, S., et al., Concentrated Growth Factor Matrices Prepared Using Silica-Coated Plastic Tubes Are Distinguishable From Those Prepared Using Glass Tubes in Platelet Distribution: Application of a Novel Near-Infrared Imaging-Based, Quantitative Technique, Front Bioeng Biotechnol, 8 (600, 2020.
44. Xu, Z., et al., Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility, Sci Rep, 6 (25169, 2016.
45. Strauss, F.J., et al., Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies, Clin Oral Investig, 24 (2): 569–584, 2020.
46. Jia, K., et al., Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization, Front Bioeng Biotechnol, 12 (1286035, 2024.
47. Dolly, A.S., et al., Osteogenic assessment of leukocyte platelet-rich fibrin and injectable platelet-rich fibrin in the human osteosarcoma MG - 63 cell line in chronic periodontitis patients: An in vitro study, J Indian Soc Periodontol, 28 (2): 192–196, 2024.
48. Burmester, A., et al., Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations, Biomatter, 4 (e967616, 2014.
49. Wong, P.C., et al., Large-Pore Platelet-Rich Fibrin with a Mg Ring to Allow MC3T3-E1 Preosteoblast Migration and to Improve Osteogenic Ability for Bone Defect Repair, Int J Mol Sci, 22 (8): 2021.
50. Chen, X., et al., Effect of Concentrated Growth Factor (CGF) on the Promotion of Osteogenesis in Bone Marrow Stromal Cells (BMSC) in vivo, Sci Rep, 8 (1): 5876, 2018.
51. Wachtel, N., et al., Platelet-Rich Fibrin Mediates Beneficial Effects on Adipose-Derived Stem Cells via Increased Levels of Key Cytokines, Wound Repair Regen, 33 (3): e70040, 2025.
52. Wang, Z.S., et al., The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering, Sci Rep, 6 (28126, 2016.
53. Xu, Q., et al., Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production, J Tissue Eng Regen Med, 11 (3): 627–636, 2017.
54. Bains, V.K., et al., Technical considerations in obtaining platelet rich fibrin for clinical and periodontal research, J Oral Biol Craniofac Res, 13 (6): 714–719, 2023.
55. Herrera-Vizcaino, C., Systematic review of platelet-rich fibrin (PRF) centrifugation protocols in oral and maxillofacial surgery and the introduction of AR2T3: an easy to remember acronym to correctly report vertical and horizontal PRF centrifugation, Frontiers of Oral and Maxillofacial Medicine, 5 (5–5, 2023.
56. de Brito Sousa, J.D., et al., Accuracy of the Lee-White Clotting Time Performed in the Hospital Routine to Detect Coagulopathy in Bothrops atrox Envenomation, Am J Trop Med Hyg, 98 (5): 1547–1551, 2018.
57. Chen, Y.-C., 用溼式法製備鍶置換氫氧基磷灰石之研究, Journal, 2012.
58. Chang, P.C., et al., A comparison of the thresholding strategies of micro-CT for periodontal bone loss: a pilot study, Dentomaxillofac Radiol, 42 (2): 66925194, 2013.
59. Kim, Y., et al., MicroCT for Scanning and Analysis of Mouse Bones, Methods Mol Biol, 2230 (169–198, 2021.
60. Mosesson, M.W., Fibrinogen and fibrin structure and functions, J Thromb Haemost, 3 (8): 1894–904, 2005.
61. Risman, R.A., et al., Comprehensive Analysis of the Role of Fibrinogen and Thrombin in Clot Formation and Structure for Plasma and Purified Fibrinogen, Biomolecules, 14 (2): 2024.
62. Goodarzi, S., et al., Are all fibrinogen concentrates the same? The effects of two fibrinogen therapies in an afibrinogenemic patient and in a fibrinogen deficient plasma model. A clinical and laboratory case report, Front Med (Lausanne), 11 (1391422, 2024.
63. Blanco, J., et al., How to explain the beneficial effects of leukocyte- and platelet-rich fibrin, Periodontol 2000, 97 (1): 74–94, 2025.
64. Grecu, A.F., et al., Platelet-Rich Fibrin and its Emerging Therapeutic Benefits for Musculoskeletal Injury Treatment, Medicina (Kaunas), 55 (5): 2019.
65. Pavlovic, V., et al., Platelet-rich fibrin: Basics of biological actions and protocol modifications, Open Med (Wars), 16 (1): 446–454, 2021.
66. Saluja, H., V. Dehane, and U. Mahindra, Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons, Ann Maxillofac Surg, 1 (1): 53–7, 2011.
67. Ievina, L. and A. Dubnika, Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery, Front Bioeng Biotechnol, 12 (1465019, 2024.
68. Lin, Y.K., et al., Platelet-Rich Fibrin Synthetic Bone Graft Enhances Bone Regeneration and Mechanical Strength in Rabbit Femoral Defects: Micro-CT and Biomechanical Study, J Funct Biomater, 16 (8): 2025.
69. Yang, Z., et al., Sticky Bone: Advances and Applications, Int J Nanomedicine, 20 (10151–10175, 2025.
70. Chen, Y.-S., et al., Enhancing bone ingrowth and mechanical bond strength at the titanium alloy 3D-printed implant-bone interface through advanced lattice designs and growth factor integration, International Journal of Bioprinting, 0 (0): 2025.
71. Ninarello, D., et al., A comprehensive systematic review of marketed bone grafts for load-bearing critical-sized bone defects, J Mech Behav Biomed Mater, 160 (106782, 2024.
72. Schwiedrzik, J.J., et al., Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO (2) treatment and gamma sterilization, Bone, 48 (6): 1370–7, 2011.
73. Zhang, K., et al., Effect of microporosity on scaffolds for bone tissue engineering, Regen Biomater, 5 (2): 115–124, 2018.
74. Yang, Z., et al., Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study, Front Bioeng Biotechnol, 10 (882631, 2022.
75. Jiao, J., et al., Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing, Front Bioeng Biotechnol, 11 (1117954, 2023.
76. Smoczer, C., et al., Growth Factors Released from Advanced Platelet-Rich Fibrin in the Presence of Calcium-Based Silicate Materials and Their Impact on the Viability and Migration of Stem Cells of Apical Papilla, Dent J (Basel), 11 (9): 2023.
77. Wang, X., et al., In Vitro and Ex Vivo Kinetic Release Profile of Growth Factors and Cytokines from Leucocyte- and Platelet-Rich Fibrin (L-PRF) Preparations, Cells, 11 (13): 2022.
78. Zwittnig, K., et al., Growth Factor Release within Liquid and Solid PRF, J Clin Med, 11 (17): 2022.
79. El Bagdadi, K., et al., Reduction of relative centrifugal forces increases growth factor release within solid platelet-rich-fibrin (PRF)-based matrices: a proof of concept of LSCC (low speed centrifugation concept), Eur J Trauma Emerg Surg, 45 (3): 467–479, 2019.
80. Iao, S., et al., Growth Factors Release in Concentrated Growth Factor and Advanced Platelet-Rich Fibrin Sticky Bone, Oral Dis, 31 (8): 2531–2539, 2025.
81. Fujii, Y., et al., Platelet-rich fibrin-conditioned medium promotes osteogenesis of dental pulp stem cells through TGF-beta and PDGF signaling, Regen Ther, 30 (100–106, 2025.
82. Chang, I.C., C.H. Tsai, and Y.C. Chang, Platelet-rich fibrin modulates the expression of extracellular signal-regulated protein kinase and osteoprotegerin in human osteoblasts, J Biomed Mater Res A, 95 (1): 327–32, 2010.
83. Sumida, R., et al., Platelet-rich fibrin increases the osteoprotegerin/receptor activator of nuclear factor-kappaB ligand ratio in osteoblasts, Exp Ther Med, 18 (1): 358–365, 2019.