簡易檢索 / 詳目顯示

研究生: 杜守虢
Tu, Shou-Guo
論文名稱: 創新改良黏性骨: 複合再生基質之生物與機械特性研究
Biomechanical and biological properties of a composite regenerative matrix: an innovative modification of sticky bone
指導教授: 陳畊仲
Cheng, Ken-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 122
中文關鍵詞: 黏性骨富含血小板纖維蛋白自體纖維膠複合再生基質氫氧基磷灰石MG-63骨再生生長因子抗壓強度孔隙率
外文關鍵詞: sticky bone, platelet-rich fibrin (PRF), autologous fibrin glue (AFG), composite regenerative matrix (CRM), hydroxyapatite (HA), bone regeneration, mechanical properties
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導引骨再生為口腔顎面外科重建骨缺損之重要治療方式,臨床上多仰賴骨移植材料搭配再生膜與鈦網以維持再生空間。然而,近年文獻指出過度的細胞阻隔可能影響血管新生,且再生膜與鈦網本身仍存在暴露風險、需二次手術移除等臨床限制。富含血小板纖維蛋白所製備之黏性骨因兼具良好操作性、空間維持能力及生長因子釋放潛能,已被廣泛應用於骨缺損重建,並在部分情況下可不依賴再生膜而達成良好臨床效果。然而,現行黏性骨製備方式仍存在凝固時間較長、生長因子分布不均、力學性質受限等問題。
    台灣齒列再生研究學會基於既有臨床成果,提出一種創新改良之黏性骨製備策略,稱為複合再生基質。此新創方法透過整合自體纖維蛋白原膠與固態富血小板纖維蛋白壓榨液中之凝血酶,並藉由多次混合與重塑步驟,使骨移植顆粒表面可均勻浸潤高濃度生長因子,同時避免傳統剪碎富血小板纖維蛋白所可能引發之纖維蛋白結構破壞,可以提升材料之凝固效率與結構穩定性。
    現存的問題是:複合再生基質所號稱的優點僅是臨床結果與使用經驗所衍伸出的推測,未經基礎研究數據證實。
    本研究之目的分為兩大目標:其一,分析固態富血小板纖維蛋白壓榨液、自體纖維蛋白原膠及其混合物的差異;其二,以基礎研究證實台灣齒列再生研究學會所提出之複合再生基質的優點。
    材料與方法如下:自血液捐贈者採集靜脈血液,製成固態富血小板纖維蛋白壓榨液、自體纖維蛋白原膠並定量其凝血因子與生長因子,並測量自體纖維蛋白原膠與兩者的混合液的凝固時間與凝塊的抗壓強度。以三種作法製備出黏性骨並定量其生長因子、孔隙率與抗壓強度。以 MG-63 細胞評估三種黏性骨的細胞增生與細胞分化能力。
    研究結果表明,固態富血小板纖維蛋白壓榨液富含凝血酶,自體纖維蛋白原膠富含纖維蛋白原與多種生長因子。固態富血小板纖維蛋白壓榨液可以加快凝固速度與凝塊的抗壓強度。複合再生基質可以提升骨粉的填充率以達到減少孔隙率,且抗壓強度也顯著高於其他製備方法;但在生長因子的釋放與細胞實驗中並沒有得到提升,反而是降低,顯示固態富血小板纖維蛋白壓榨液的加入可能導致所含的生長因子被稀釋。
    總結來說,本研究闡明固態富血小板纖維蛋白壓榨液與自體纖維蛋白原膠的成分與交互作用效果,而複合再生基質的做法可以提升其機械性質,但是沒有提升其生物性質。

    To overcome the limitations of existing bone graft materials in osteogenesis and mechanical stability, this study evaluated the biological and biomechanical performance of sticky bone, with particular emphasis on a novel formulation termed the Composite Regenerative Matrix (CRM). Three preparation strategies were systematically compared: a conventional method combining autologous fibrin glue (AFG) with hydroxyapatite (HA), an updated method incorporating fragmented platelet-rich fibrin (PRF) membranes, and the CRM approach produced by repeated kneading of AFG, PRF serum, and HA to induce multi-step fibrin network formation. Biochemical analyses demonstrated that AFG contained abundant fibrinogen and growth factors, whereas PRF serum exhibited significantly higher thrombin levels, contributing to accelerated coagulation and enhanced clot strength when combined with AFG. Mechanical testing and micro-computed tomography revealed that CRM achieved the highest compressive strength, the most homogeneous HA particle distribution, and a well-organized pore architecture among all groups. In vitro assays using MG-63 osteoblast-like cells confirmed the biocompatibility of all formulations, with CRM showing superior or comparable effects on cell proliferation, TGF-β1 secretion, and early osteogenic differentiation. Collectively, these findings indicate that while conventional and updated methods offer procedural simplicity and rapid moldability, respectively, CRM provides enhanced mechanical stability and structural integrity, making it particularly suitable for large bone defect reconstruction requiring sustained support.

    摘要 i Abstract iii 誌謝 vii 目錄 viii 表目錄 xiv 圖目錄 xv 第一章 緒論 1 1.1 骨缺損重建與常用骨移植材料 1 1.2 生長因子於骨再生中的重要性 3 1.3 各類血小板製劑之發展與特性 6 1.3.1 Platelet-Rich Plasma (PRP) 7 1.3.2 Platelet-Rich Fibrin (PRF、L-PRF) 7 1.3.3 Advanced PRF (A-PRF) 8 1.3.4 Injectable PRF (i-PRF) 8 1.3.5 Concentrated Growth Factors (CGF) 8 1.3.6 Titanium-prepared PRF (T-PRF) 9 1.3.7 Concentrated PRF (C-PRF) 9 1.3.8 Albumin-PRF (Alb-PRF) 10 1.4 凝血生理機制與血小板製劑差異之形成 10 1.5 黏性骨 (sticky bone) 的作法 11 1.6 PRF 與黏性骨體外研究中常用的細胞種類 13 1.6.1 成骨肉瘤來源成骨樣細胞:MG-63、SaOS-2 與 U2OS 14 1.6.2 小鼠前驅成骨細胞 (MC3T3-E1) 14 1.6.3 骨髓間質幹細胞 (BMSCs) 15 1.6.4 脂肪來源幹細胞 (ADSCs) 15 1.6.5 牙周韌帶幹細胞 (PDLSCs) 與牙周組織再生 16 1.7 成骨相關細胞功能評估指標 17 1.7.1 鹼性磷酸酶 (Alkaline phosphatase):早期成骨分化指標 17 1.7.2 骨鈣素 (Osteocalcin):晚期成骨與骨基質成熟指標 18 1.7.3 骨保護素 (Osteoprotegerin):骨形成與骨吸收平衡指標 18 1.8 現存問題 19 1.9 研究目的 19 第二章 材料與實驗方法 21 2.1 實驗流程 21 2.1.1 實驗材料與藥品 21 2.1.2 實驗儀器 23 2.2 血液捐贈者 24 2.3 PRF 的製備 24 2.4 PRF 之特性分析 25 2.4.1 凝血相關因子 (fibrinogen 與 thrombin) 之測定 25 2.4.2 生長因子 (VEGF-A, TGF-β1 與 PDGF-BB) 之測定 25 2.4.3 凝固時間測定 26 2.4.4 抗壓強度測定 26 2.5 骨粉製備 27 2.6 製備不同做法的黏性骨 28 2.6.1 傳統法黏性骨製備 28 2.6.2 更新法黏性骨製備 28 2.6.3 複合再生基質製備 29 2.7 黏性骨之特性分析 29 2.7.1 生長因子 (TGF-β1 與 PDGF-BB) 之測定 29 2.7.2 抗壓強度測定 30 2.7.3 孔隙率測定 30 2.8 細胞培養 31 2.8.1 細胞選用 31 2.8.2 細胞培養萃取液製備 32 2.8.3 萃取液之稀釋 33 2.9 體外實驗 33 2.9.1 細胞增生實驗 (PrestoBlue) 33 2.9.2 細胞分泌之生長因子 (TGF-β1) 以及骨整合因子 (OC, OPG) 34 2.9.3 細胞分化實驗 (ALP activity) 35 2.10 樣本數與實驗重複數之定義 36 2.11 統計分析 37 第三章 結果 38 3.1 捐贈者基本資料與樣本配置說明 38 3.2 PRF 之特性分析 38 3.2.1 凝血相關因子 (Fibrinogen 與 Thrombin) 之測定 38 3.2.2 生長因子 (VEGF-A, TGF-β1 與 PDGF-BB) 之測定 40 3.2.3 凝固時間測定 41 3.2.4 抗壓強度測定 41 3.3 製備不同做法的黏性骨 42 3.4 黏性骨之特性分析 42 3.4.1 生長因子 (TGF-β1 與 PDGF-BB) 之測定 42 3.4.2 抗壓強度測定 43 3.4.3 孔隙率測定 44 3.5 細胞培養 45 3.6 體外實驗 45 3.6.1 細胞增生實驗 (PrestoBlue) 46 3.6.2 細胞分泌之生長因子 (TGF-β1) 以及骨整合因子 (OC, OPG) 46 3.6.3 細胞分化實驗 (ALP activity) 47 第四章 討論 47 4.1 AFG 與 PRF serum 之凝固特性 49 4.2 PRF 纖維結構對黏性骨抗壓強度的貢獻 49 4.3 黏性骨之 HA 分布、孔隙結構與抗壓行為 50 4.3.1 HA 分布均勻性與孔隙結構特徵 50 4.3.2 孔隙率與抗壓強度之關係 50 4.3.3 孔隙率與死腔之關係 51 4.4 生長因子釋放特性 51 4.4.1 PRF 的生長因子含量 51 4.4.2 文獻支持與對照 52 4.4.3 黏性骨的生長因子釋放 52 4.4.4 文獻支持與對照 53 4.4.5 生長因子釋放行為之結構性解釋 53 4.5 黏性骨對成骨細胞增生與早期分化反應的影響機制 54 4.5.1 黏性骨萃取液對成骨細胞增生之影響 54 4.5.2 成骨分化指標 (ALP) 與細胞功能狀態之解讀 54 4.5.3 成骨相關因子分泌反應 (TGF-β1、OC、OPG) 55 4.6 研究限制與未來研究方向 56 4.6.1 研究限制 56 4.6.2 未來研究方向 57 第五章 結論 59 5.1 AFG 與 PRF serum 具有本質上不同的凝固特性 59 5.2 複合再生基質具有更好的機械性質 59 5.3 複合再生基質沒有釋放更多生長因子 59 5.4 複合再生基質之生物性質較差 60 5.5 總結 60 參考文獻 61

    1. Albrektsson, T. and C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur Spine J, 10 Suppl 2 (Suppl 2): S96–101, 2001.
    2. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing, Organogenesis, 8 (4): 114–24, 2012.
    3. Ivanova, N., et al., Types of Bone Substitutes and Their Application in Regenerative Medicine: A Systematic Review, J Funct Biomater, 16 (9): 2025.
    4. Titsinides, S., G. Agrogiannis, and T. Karatzas, Bone grafting materials in dentoalveolar reconstruction: A comprehensive review, Jpn Dent Sci Rev, 55 (1): 26–32, 2019.
    5. Wang, W. and K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact Mater, 2 (4): 224–247, 2017.
    6. Li, M., et al., [Study on the correlation between the content of bone morphogenetic protein 2 in demineralized bone matrix and its osteogenic activity in vitro and in vivo], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 35 (5): 620–626, 2021.
    7. Mroz, T.E., et al., Musculoskeletal allograft risks and recalls in the United States, J Am Acad Orthop Surg, 16 (10): 559–65, 2008.
    8. Yang, L.S., et al., [Comparative study of processed autogenous tooth bone and xenogeneic bovine bone in repairing an alveolar bone defect], Hua Xi Kou Qiang Yi Xue Za Zhi, 36 (4): 372–377, 2018.
    9. Jain, D. and D. Deepa, A comparative evaluation of freeze-dried bone allograft with and without bioabsorbable guided tissue regeneration membrane Healiguide ((R)) in the treatment of Grade II furcation defects: A clinical study, J Indian Soc Periodontol, 19 (6): 645–50, 2015.
    10. Zhang, J., et al., Research Progress of Bone Grafting: A Comprehensive Review, Int J Nanomedicine, 20 (4729–4757, 2025.
    11. Mondal, S., et al., Hydroxyapatite: A journey from biomaterials to advanced functional materials, Adv Colloid Interface Sci, 321 (103013, 2023.
    12. Xie, H., et al., Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2, RSC Adv, 13 (33): 23010–23020, 2023.
    13. Mo, X., et al., Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering, Int J Mol Sci, 24 (2): 2023.
    14. Amiryaghoubi, N. and R. Jahanban Esfahlan, Applications of Hydroxyapatite-Based Polymeric Scaffolds in Bone Tissue Engineering: An Update, Adv Pharm Bull, 14 (4): 794–806, 2024.
    15. Rodriguez, I.A., et al., Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy, Biomed Res Int, 2014 (392398, 2014.
    16. de Lima Barbosa, R., et al., The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration-A Scoping Review of In Vitro Evidence, J Funct Biomater, 14 (10): 2023.
    17. Moshiri, A. and A. Oryan, Role of platelet rich plasma in soft and hard connective tissue healing: An evidence based review from basic to clinical application, Hard Tissue, 2 (1): 6–6, 2013.
    18. Ferrari, M., et al., A new technique for hemodilution, preparation of autologous platelet-rich plasma and intraoperative blood salvage in cardiac surgery, Int J Artif Organs, 10 (1): 47–50, 1987.
    19. Moscicka, P. and A. Przylipiak, History of autologous platelet-rich plasma: A short review, J Cosmet Dermatol, 20 (9): 2712–2714, 2021.
    20. Whitman, D.H., R.L. Berry, and D.M. Green, Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery, J Oral Maxillofac Surg, 55 (11): 1294–9, 1997.
    21. Marx, R.E., et al., Platelet-rich plasma: Growth factor enhancement for bone grafts, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 85 (6): 638–46, 1998.
    22. Goczyńska, P., J. Lasocka, and E. Lachert, Fibrin glues — the current state of knowledge, Journal of Transfusion Medicine, 14 (4): 214–224, 2021.
    23. ÖZsaĞIr, Z.B. and M. Tunali, Injectable platelet-rich fibrin: a new material in medicine and dentistry, Mucosa, 3 (2): 27–33, 2020.
    24. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e37–44, 2006.
    25. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e45–50, 2006.
    26. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e51–5, 2006.
    27. Choukroun, J., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101 (3): e56–60, 2006.
    28. Ghanaati, S., et al., Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells, J Oral Implantol, 40 (6): 679–89, 2014.
    29. Miron, R.J., et al., Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry?, Clin Oral Investig, 21 (8): 2619–2627, 2017.
    30. Ezzatt, O.M., Autologous Platelet Concentrate Preparations in Dentistry, Biomedical Journal of Scientific & Technical Research, 8 (5): 2018.
    31. Sohn, D.S., et al., Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone, Implant Dent, 20 (5): 389–95, 2011.
    32. Rodella, L.F., et al., Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction, Microsc Res Tech, 74 (8): 772–7, 2011.
    33. Qiao, J., N. An, and X. Ouyang, Quantification of growth factors in different platelet concentrates, Platelets, 28 (8): 774–778, 2017.
    34. Honda, H., et al., Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model, J Artif Organs, 16 (3): 305–15, 2013.
    35. Tunali, M., et al., In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate, Br J Oral Maxillofac Surg, 51 (5): 438–43, 2013.
    36. Tunali, M., et al., A novel platelet concentrate: titanium-prepared platelet-rich fibrin, Biomed Res Int, 2014 (209548, 2014.
    37. Ravi, S. and M. Santhanakrishnan, Mechanical, chemical, structural analysis and comparative release of PDGF-AA from L-PRF, A-PRF and T-PRF - an in vitro study, Biomater Res, 24 (16, 2020.
    38. Miron, R.J., et al., A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields, Clin Oral Investig, 24 (8): 2819–2828, 2020.
    39. Fujioka-Kobayashi, M., et al., Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols, Clin Oral Investig, 24 (12): 4373–4383, 2020.
    40. Barros Mourão, C.d.A., et al., Characterization of a new membrane from concentrated growth factors associated with denaturized Albumin (Alb-CGF) for clinical applications: A preliminary study, International Journal of Growth Factors and Stem Cells in Dentistry, 1 (2): 2018.
    41. Fujioka-Kobayashi, M., et al., Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF), Platelets, 32 (1): 74–81, 2021.
    42. Hadziabdic, N., PRF and Sticky Bone as Regenerative Materials in Oral Surgery, in Craniofacial Surgery – Recent Advances, New Perspectives and Applications. 2022, IntechOpen: London. p. 1–26.
    43. Yamaguchi, S., et al., Concentrated Growth Factor Matrices Prepared Using Silica-Coated Plastic Tubes Are Distinguishable From Those Prepared Using Glass Tubes in Platelet Distribution: Application of a Novel Near-Infrared Imaging-Based, Quantitative Technique, Front Bioeng Biotechnol, 8 (600, 2020.
    44. Xu, Z., et al., Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility, Sci Rep, 6 (25169, 2016.
    45. Strauss, F.J., et al., Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies, Clin Oral Investig, 24 (2): 569–584, 2020.
    46. Jia, K., et al., Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization, Front Bioeng Biotechnol, 12 (1286035, 2024.
    47. Dolly, A.S., et al., Osteogenic assessment of leukocyte platelet-rich fibrin and injectable platelet-rich fibrin in the human osteosarcoma MG - 63 cell line in chronic periodontitis patients: An in vitro study, J Indian Soc Periodontol, 28 (2): 192–196, 2024.
    48. Burmester, A., et al., Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations, Biomatter, 4 (e967616, 2014.
    49. Wong, P.C., et al., Large-Pore Platelet-Rich Fibrin with a Mg Ring to Allow MC3T3-E1 Preosteoblast Migration and to Improve Osteogenic Ability for Bone Defect Repair, Int J Mol Sci, 22 (8): 2021.
    50. Chen, X., et al., Effect of Concentrated Growth Factor (CGF) on the Promotion of Osteogenesis in Bone Marrow Stromal Cells (BMSC) in vivo, Sci Rep, 8 (1): 5876, 2018.
    51. Wachtel, N., et al., Platelet-Rich Fibrin Mediates Beneficial Effects on Adipose-Derived Stem Cells via Increased Levels of Key Cytokines, Wound Repair Regen, 33 (3): e70040, 2025.
    52. Wang, Z.S., et al., The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering, Sci Rep, 6 (28126, 2016.
    53. Xu, Q., et al., Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production, J Tissue Eng Regen Med, 11 (3): 627–636, 2017.
    54. Bains, V.K., et al., Technical considerations in obtaining platelet rich fibrin for clinical and periodontal research, J Oral Biol Craniofac Res, 13 (6): 714–719, 2023.
    55. Herrera-Vizcaino, C., Systematic review of platelet-rich fibrin (PRF) centrifugation protocols in oral and maxillofacial surgery and the introduction of AR2T3: an easy to remember acronym to correctly report vertical and horizontal PRF centrifugation, Frontiers of Oral and Maxillofacial Medicine, 5 (5–5, 2023.
    56. de Brito Sousa, J.D., et al., Accuracy of the Lee-White Clotting Time Performed in the Hospital Routine to Detect Coagulopathy in Bothrops atrox Envenomation, Am J Trop Med Hyg, 98 (5): 1547–1551, 2018.
    57. Chen, Y.-C., 用溼式法製備鍶置換氫氧基磷灰石之研究, Journal, 2012.
    58. Chang, P.C., et al., A comparison of the thresholding strategies of micro-CT for periodontal bone loss: a pilot study, Dentomaxillofac Radiol, 42 (2): 66925194, 2013.
    59. Kim, Y., et al., MicroCT for Scanning and Analysis of Mouse Bones, Methods Mol Biol, 2230 (169–198, 2021.
    60. Mosesson, M.W., Fibrinogen and fibrin structure and functions, J Thromb Haemost, 3 (8): 1894–904, 2005.
    61. Risman, R.A., et al., Comprehensive Analysis of the Role of Fibrinogen and Thrombin in Clot Formation and Structure for Plasma and Purified Fibrinogen, Biomolecules, 14 (2): 2024.
    62. Goodarzi, S., et al., Are all fibrinogen concentrates the same? The effects of two fibrinogen therapies in an afibrinogenemic patient and in a fibrinogen deficient plasma model. A clinical and laboratory case report, Front Med (Lausanne), 11 (1391422, 2024.
    63. Blanco, J., et al., How to explain the beneficial effects of leukocyte- and platelet-rich fibrin, Periodontol 2000, 97 (1): 74–94, 2025.
    64. Grecu, A.F., et al., Platelet-Rich Fibrin and its Emerging Therapeutic Benefits for Musculoskeletal Injury Treatment, Medicina (Kaunas), 55 (5): 2019.
    65. Pavlovic, V., et al., Platelet-rich fibrin: Basics of biological actions and protocol modifications, Open Med (Wars), 16 (1): 446–454, 2021.
    66. Saluja, H., V. Dehane, and U. Mahindra, Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons, Ann Maxillofac Surg, 1 (1): 53–7, 2011.
    67. Ievina, L. and A. Dubnika, Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery, Front Bioeng Biotechnol, 12 (1465019, 2024.
    68. Lin, Y.K., et al., Platelet-Rich Fibrin Synthetic Bone Graft Enhances Bone Regeneration and Mechanical Strength in Rabbit Femoral Defects: Micro-CT and Biomechanical Study, J Funct Biomater, 16 (8): 2025.
    69. Yang, Z., et al., Sticky Bone: Advances and Applications, Int J Nanomedicine, 20 (10151–10175, 2025.
    70. Chen, Y.-S., et al., Enhancing bone ingrowth and mechanical bond strength at the titanium alloy 3D-printed implant-bone interface through advanced lattice designs and growth factor integration, International Journal of Bioprinting, 0 (0): 2025.
    71. Ninarello, D., et al., A comprehensive systematic review of marketed bone grafts for load-bearing critical-sized bone defects, J Mech Behav Biomed Mater, 160 (106782, 2024.
    72. Schwiedrzik, J.J., et al., Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO (2) treatment and gamma sterilization, Bone, 48 (6): 1370–7, 2011.
    73. Zhang, K., et al., Effect of microporosity on scaffolds for bone tissue engineering, Regen Biomater, 5 (2): 115–124, 2018.
    74. Yang, Z., et al., Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study, Front Bioeng Biotechnol, 10 (882631, 2022.
    75. Jiao, J., et al., Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing, Front Bioeng Biotechnol, 11 (1117954, 2023.
    76. Smoczer, C., et al., Growth Factors Released from Advanced Platelet-Rich Fibrin in the Presence of Calcium-Based Silicate Materials and Their Impact on the Viability and Migration of Stem Cells of Apical Papilla, Dent J (Basel), 11 (9): 2023.
    77. Wang, X., et al., In Vitro and Ex Vivo Kinetic Release Profile of Growth Factors and Cytokines from Leucocyte- and Platelet-Rich Fibrin (L-PRF) Preparations, Cells, 11 (13): 2022.
    78. Zwittnig, K., et al., Growth Factor Release within Liquid and Solid PRF, J Clin Med, 11 (17): 2022.
    79. El Bagdadi, K., et al., Reduction of relative centrifugal forces increases growth factor release within solid platelet-rich-fibrin (PRF)-based matrices: a proof of concept of LSCC (low speed centrifugation concept), Eur J Trauma Emerg Surg, 45 (3): 467–479, 2019.
    80. Iao, S., et al., Growth Factors Release in Concentrated Growth Factor and Advanced Platelet-Rich Fibrin Sticky Bone, Oral Dis, 31 (8): 2531–2539, 2025.
    81. Fujii, Y., et al., Platelet-rich fibrin-conditioned medium promotes osteogenesis of dental pulp stem cells through TGF-beta and PDGF signaling, Regen Ther, 30 (100–106, 2025.
    82. Chang, I.C., C.H. Tsai, and Y.C. Chang, Platelet-rich fibrin modulates the expression of extracellular signal-regulated protein kinase and osteoprotegerin in human osteoblasts, J Biomed Mater Res A, 95 (1): 327–32, 2010.
    83. Sumida, R., et al., Platelet-rich fibrin increases the osteoprotegerin/receptor activator of nuclear factor-kappaB ligand ratio in osteoblasts, Exp Ther Med, 18 (1): 358–365, 2019.

    下載圖示
    校外:立即公開
    QR CODE