| 研究生: |
高煥欽 Kao, Huan-Chin |
|---|---|
| 論文名稱: |
利用衛星測高和潮位站資料評估內陸水體及沿岸海水面變動與年度海水面振幅 Assessment of Inland Water and Coastal Sea Level Variations and Annual Sea Level Amplitude Using Satellite Altimetry and Tide Gauges |
| 指導教授: |
郭重言
Kuo, Chung-Yen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 衛星測高 、內陸水體 、年平均振幅 、潮位站 、總體經驗模態分解法 、區域海水面上升 |
| 外文關鍵詞: | Satellite altimetry, inland water, annual sea level change, tide gauge, ensemble empirical mode decomposition, regional sea level rise |
| 相關次數: | 點閱:154 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1990年代以來,衛星測高被證明可用來精確量測水位高度、冰原高度及平坦陸地表面高度變化的革命性監測技術。然而,受限於測高儀微波脈衝的物理特性及相對不可靠的地球物理改正,要獲得沿海地區和內陸水域的精確水位觀測值,至今仍然充滿挑戰性。隨著科技進步,新型測高衛星Cryosat-2與Satellite with ARgos and AltiKa (SARAL/AltiKa)藉由更高的空間解析度克服傳統微波脈衝的局限性,可更精確地量測內陸水體和沿海地區的水位高度變化。本研究利用波形特徵剔除非水面反射之訊號,評估Cryosat-2 LRM (Low Resolution Mode)和SARin (Interferometric Synthetic Aperture Radar)模式及SARAL/AltiKa Ka-band 測高數據於青藏高原中部兩個相連湖泊米提江占木錯(又名赤布張錯, Migriggyangzham Co)和多爾索洞錯(Dorsoidong Co)及台灣沿海地區水位變化情形,並與CNES Hydroweb數據庫與台灣潮位站資料進行分析。成果顯示Cryosat-2 SARin模式與SARAL/AltiKa Ka-band重定觀測值在米提江占木錯和多爾索洞錯和Hydroweb數據資料庫所觀測到的水位變化趨勢相符,於2011-2017年及2013-2015年期間,水位每年上升約0.30 m,並以Ka-band數據之RMS表現較佳。而於台灣沿海地區,SARAL/AltiKa Ka-band成果明顯優於Cryosat-2 LRM模式,與潮位站資料RMS值皆小於6 cm,相關係數高達0.90以上,也證明Ka-band波段確實克服傳統Ku-band波段之限制,提升沿岸水位觀測精度。
而了解不同沿海區域季節性海水面週期的時空變化是另一個重要研究主題,特別是年週期海水面變化,因在大部分海洋範圍年週期皆比半年週期來的更為明顯,其中總體經驗模態分解法(ensemble empirical mode decomposition, EEMD)已被廣泛用於研究潮汐分量、長期海平面上升和年代際海平面變化。由於部分海域之年度海水面變化研究仍然不足,如東北太平洋海域,故本研究利用總體經驗模態分解法分析測高每月海水面異常數據及偵測年度週期特徵,並使用1950至2016年長期潮位觀測資料與相關氣候因子分析東北太平洋年度海水面振幅的趨勢、特徵以及相關機制。研究成果顯示區域內沿海海水面年平均振幅在14-220 mm並顯現出年際至年代際的變化(interannual-to-decadal variability),而在北太平洋其餘沿海地區,西海岸年平均振幅約在77-124 mm,東海岸年平均振幅則在84-87 mm之間。在1952-2014年期間,南海和東北太平洋西部沿海地區估計之年振幅呈現下降趨勢−0.77 mm·yr−1至−0.11 mm·yr−1,研究發現南海西海岸年振幅下降與風壓變化相當吻合,也與1980年以來的東北太平洋年度海平面振幅的時間變化呈現高度相關,相關係數達0.61至0.72,而太平洋年代際(Pacific Decadal Oscillation ,PDO)並不主導東北太平洋沿岸的年海水面振幅。
回到世界持續關注之議題-海水面上升,海水面上升是一個全球性的現象,但上升速率和影響程度則因地區而異。聯合國政府間氣候變遷專家小組(IPCC)於2019年報告中指出由於氣候暖化造成全球海水面上升速率加速,低窪沿海地區和國家,如阿拉伯半島,受到的威脅加劇。然而,由於阿拉伯半島地區潮位站分佈稀疏且觀測時間段長短不一致,幾乎無法全面性研究該區域海水面變化,測高資料則適時補足此缺陷,有助於分析此區域海水面長期變化。本研究採用平均海平面永久服務中心(Permanent Service for Mean Sea Level, PSMSL)之潮位站資料、1993年至2019年衛星海洋數據存檔、驗正與解釋(Archiving, Validation and Interpretation of Satellite Oceanographic data, AVISO)及歐洲聯盟氣候監測機構「哥白尼氣候變化服務」(Copernicus Climate Change Service, C3S)提供之測高數據進行分析,以了解阿拉伯半島周圍海域如紅海、阿拉伯海和波斯灣的區域海水面變化趨勢,並利用測高與潮位站資料估算地殼變動速率。成果顯示此區域海水面皆呈現上升趨勢,測高資料與對應之潮位資料相關係數高達0.86至0.95,驗證測高資料之準確性,進一步估算潮位站地殼變動情形,各潮位站以0.1至2.4 mm·yr−1下沉,此現象與該區域水資源不足超抽地下水導致地層下陷之情形相吻合。由於潮位資料觀測時間段太短,本研究藉由測高資料分析阿拉伯半島周圍長期海水面之變化,成果顯示周圍海水面在1993至2019年期間約以3.4-3.5 mm·yr−1上升,並以紅海區域上升速率最快達4 mm·yr−1,比Dangendorf 等人(2019)計算之1993-2019年全球平均海水面上升速率(3.1 mm·yr−1)高出10-30%,顯示阿拉伯半島沿岸面臨地層下陷與海水面上升速率高於全球平均值之雙重威脅,情況相當嚴峻。在海水面年週期訊號方面,由於紅海區域受到強烈風場影響其年振幅高達157 mm,明顯大於阿拉伯海和波斯灣的年振幅(~40 mm),影響此區域年週期訊號之因子與程度值得未來更深入探討。
Satellite altimetry has been proven as an effective technology to accurately measure water level, ice elevation, and flat land surface changes since the 1990s. However, retrieving accurate water level measurements of conventional altimetry missions in coastal areas and inland water is challenging due to the limitation of wider footprint resulting in contaminated waveforms by terrain topography and relatively unreliable geophysical corrections. New altimetric missions such as Cryosat-2 and Satellite with ARgos and AltiKa (SARAL/AltiKa) have been designed to overcome limitations of pulse-limited altimetry with higher along-track spatial resolution to measure more accurately inland water levels for small water bodies and coastal sea level changes. This study evaluates the performance of Cryosat-2 low-resolution (LRM) and SARin modes and SARAL/AltiKa Ka-band data on two connected lakes in central Tibetan Plateau and Taiwan's coastal region. Results are compared with in-situ tide gauge data in Taiwan and altimetric lake level time series from the CNES Hydroweb database. Our results show that water level change trends observed by Cryosat-2 20-Hz SARin retracked observations, the SARAL/AltiKa 40-Hz Ice-1 retracked data, and the Hydroweb measurements are consistent with the estimated water level trend of ~0.30 m/y, during 2011-2017, and 2013-2015, for the Tibetan Migriggyangzham Co and Dorsoidong Co, respectively. Moreover, the performance for SARAL/AltiKa is better than that of Cryosat-2 SARin data. For the coastal region, SARAL/AltiKa is still better than that of Cryosat-2 LRM data in Taiwan. The RMS is less than 6 cm and have a high positive correlation (0.90) to tide gauge measurements. This finding demonstrates the superiority of the Ka-band over Ku-band radar altimetry.
A critical topic for coastal systems is understanding the spatial and temporal changes of seasonal sea level cycles, especially for the annual sea level cycle, which is substantially larger than the semi-annual cycle in most parts of the ocean. The method, the Ensemble empirical mode decomposition (EEMD), has been widely utilized in the investigation of tidal components, long-term sea level rise and decadal sea level variation. Due to the lack of research on annual sea level variations in some areas, such as the Northeast Pacific Ocean, we used EEMD to analyze the observed monthly sea level anomalies and detect annual cycle characteristics and long-term tide gauge records covering 1950-2016 to investigate the trend and characteristics of annual sea level amplitudes and related mechanisms in the North Pacific Ocean. The results show that the average annual amplitude of coastal sea level exhibits interannual-to-decadal variability within the range of 14-220 mm. The mean annual amplitude is relatively low between 77 and 124 mm for the western coast and 84 and 87 mm for the eastern coast in the rest of the coastal regions of the North Pacific Ocean. The estimated trend values for annual sea level amplitudes in the western coastal areas of the South China Sea and Northeast Pacific Ocean have statistically decreased over 1952-2014 with a range of −0.77 mm·yr−1 to −0.11 mm·yr−1. The decreasing annual amplitude in the west coast of the South China Sea is in good agreement with the annual mean wind stress. It also could explain the temporal variations of annual sea level amplitude in the Northeast Pacific Ocean, especially the high correlations (0.61-0.72) since 1980. However, the PDO does not dominate the annual sea level amplitude in the Northeast Pacific coasts.
Sea level rise is a global phenomenon, but the distribution and impact of sea level rise vary regionally. Among the critical findings from the IPCC Reports, the rate of global sea level rise has increased due to global warming. The low-lying coastal areas and countries, such as the Arabian Peninsula, have a high vulnerability to sea level rise. Due to the sparse distribution and short time series of tide gauges in the Arabian Peninsula, it is almost impossible to comprehensively investigate the regional sea level changes. However, combined with the high quality satellite altimeter data, it is possible to analyze the long-term changes of the sea surface in this area. In this study, the available tide gauge data along the coasts of Arabian Peninsula from Permanent Service for Mean Sea Level (PSMSL) and altimetry data for 1993–2019 from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) and the Copernicus Climate Change Service (C3S) are analyzed to understand the changing trend of the sea level in the Red Sea, the Arabian Sea, and the Persian Gulf and estimated the vertical land motion at tide gauge stations. The results show a rising sea level trend in this area. The altimetry data is consistent with the corresponding tide gauge data with a high correlation coefficient (0.86-0.95), which proves the reliability of the altimetry data. Due to excessive extraction of groundwater, the estimation of the vertical land motion at tide gauge stations subsides with a rate of -0.1 to -2.4 mm·yr−1. Over 1993–2019, we found that the estimated rising rate by altimetry data around Arabian Peninsula is about 3.4-3.5 mm·yr−1, and the highest rising rate is found in the Red Sea with an estimated rate of 4 mm·yr−1. These results indicated that the area would rise by 10-30% more than the global average rise, ~3.1 mm·yr−1, that Dangendorf et al. (2019) calculate. It means the Arabian Peninsula faces the dual threat of land subsidence and sea level rise above the global average. In terms of the annual sea level cycle, duo to the strong wind fields over the Red Sea, the largest annual amplitude is seen at the Red Sea, about 157 mm, which is significantly larger than the annual amplitude of the Arabian Sea and the Persian Gulf (~40 mm). Further investigation of the factors contributing to the spatial and temporal changes of seasonal sea level cycles around Arabian Peninsula will be required in the future.
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., Benveniste, J., & Cazenave, A. (2016). Satellite Altimetry-Based Sea Level at Global and Regional Scales. Surveys in Geophysics, 38(1), 7-31. doi:10.1007/s10712-016-9389-8
Alothman, A., & Ayhan, M. (2010, January 01, 2010). Dtection of Sea Level Rise within the Arabian Gulf Using Space Based GNSS Measurements and Insitu Tide Gauge data.
Alothman, A. O., Bos, M., Fernandes, R., Radwan, A. M., & Rashwan, M. (2019). Annual sea level variations in the Red Sea observed using GNSS. Geophysical Journal International, 221(1), 826-834. doi:10.1093/gji/ggaa032
Alothman, A. O., Bos, M. S., Fernandes, R. M. S., & Ayhan, M. E. (2014). Sea level rise in the north-western part of the Arabian Gulf. Journal of Geodynamics, 81, 105-110. doi:10.1016/j.jog.2014.09.002
Alsahli, M. M. M., & AlHasem, A. M. (2016). Vulnerability of Kuwait coast to sea level rise. Geografisk Tidsskrift-Danish Journal of Geography, 116(1), 56-70. doi:10.1080/00167223.2015.1121403
Amante, C., & Eakins, B. W. (2009). ETOPO1 Global Relief Model converted to PanMap layer format. Retrieved from: https://doi.org/10.1594/PANGAEA.769615
Amiruddin, A. M., Haigh, I. D., Tsimplis, M. N., Calafat, F. M., & Dangendorf, S. (2015). The seasonal cycle and variability of sea level in the South China Sea. Journal of Geophysical Research: Oceans, 120(8), 5490-5513. doi:10.1002/2015jc010923
Andersen, O. B., & Scharroo, R. (2011). Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In Coastal altimetry (pp. 103-145): Springer.
Arsen, A., Crétaux, J.-F., & Abarca del Rio, R. (2015). Use of SARAL/AltiKa over Mountainous Lakes, Intercomparison with Envisat Mission. Marine Geodesy, 38(sup1), 534-548. doi:10.1080/01490419.2014.1002590
Babu, D. S. S., Sivalingam, S., & Machado, T. (2012). Need for adaptation strategy against global sea level rise: an example from Saudi coast of Arabian gulf. Mitigation and Adaptation Strategies for Global Change, 17(7), 821-836. doi:10.1007/s11027-011-9346-2
Bamber, J. L. (1994). Ice sheet altimeter processing scheme. International Journal of Remote Sensing, 15(4), 925-938. doi:10.1080/01431169408954125
Biancamaria, S., Andreadis, K. M., Durand, M., Clark, E. A., Rodriguez, E., Mognard, N. M., Alsdorf, D. E., Lettenmaier, D. P., & Oudin, Y. (2010). Preliminary Characterization of SWOT Hydrology Error Budget and Global Capabilities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 6-19. doi:10.1109/jstars.2009.2034614
Boergens, E., Nielsen, K., Andersen, O., Dettmering, D., & Seitz, F. (2017). River Levels Derived with CryoSat-2 SAR Data Classification—A Case Study in the Mekong River Basin. Remote Sensing, 9(12). doi:10.3390/rs9121238
Bonnefond, P., Laurain, O., Exertier, P., Boy, F., Guinle, T., Picot, N., Labroue, S., Raynal, M., Donlon, C., Féménias, P., Parrinello, T., & Dinardo, S. (2018). Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities. Remote Sensing, 10(2). doi:10.3390/rs10010092
Bonnefond, P., Verron, J., Aublanc, J., Babu, K. N., Bergé-Nguyen, M., Cancet, M., Chaudhary, A., Crétaux, J.-F., Frappart, F., Haines, B. J., Laurain, O., Ollivier, A., Poisson, J.-C., Prandi, P., Sharma, R., Thibaut, P., & Watson, C. (2018). The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data. Remote Sensing, 10(1). doi:10.3390/rs10010083
Bouzinac, C. (2014). CryoSat Product Handbook. In ESA User Manual, ESA, ESRIN, Italy (Vol. 4121, pp. 4123).
Bromirski, P. D., Miller, A. J., Flick, R. E., & Auad, G. (2011). Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. Journal of Geophysical Research, 116(C7). doi:10.1029/2010jc006759
Brown, G. S. (1977). The Average Impulse Response of a Rough Surface and Its Applications.
Calafat, F. M., Wahl, T., Lindsten, F., Williams, J., & Frajka-Williams, E. (2018). Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat Commun, 9(1), 2571. doi:10.1038/s41467-018-04898-y
Calmant, S., Seyler, F., & Cretaux, J. F. (2008). Monitoring Continental Surface Waters by Satellite Altimetry. Surveys in Geophysics, 29(4-5), 247-269. doi:10.1007/s10712-008-9051-1
Carson, M., Köhl, A., Stammer, D., Meyssignac, B., Church, J., Schröter, J., Wenzel, M., & Hamlington, B. (2017). Regional Sea Level Variability and Trends, 1960-2007: A Comparison of Sea Level Reconstructions and Ocean Syntheses. Journal of Geophysical Research: Oceans, 122(11), 9068-9091. doi:10.1002/2017jc012992
Cartwright, D. E., & Edden, A. C. (1973). Corrected Tables of Tidal Harmonics. Geophysical Journal International, 33(3), 256-264.
Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4(5), 358-361. doi:10.1038/nclimate2159
Chambers, D. P. (2015). Evaluation of empirical mode decomposition for quantifying multi-decadal variations and acceleration in sea level records. Nonlin. Processes Geophys., 22(2), 157-166. doi:10.5194/npg-22-157-2015
Chander, S., Mishra, S. K., Chauhan, P., & Ajai. (2014). Ice Height and Backscattering Coefficient Variability over Greenland Ice Sheets Using SARAL Radar Altimeter. Marine Geodesy, 38(sup1), 466-476. doi:10.1080/01490419.2014.990590
Chaudhary, A., Basu, S., Kumar, R., Mahesh, C., & Sharma, R. (2015). Shape Classification of AltiKa 40-Hz Waveforms using Linear Discriminant Analysis and Bayes Decision Rule in the Gujarat Coastal Region. Marine Geodesy, 38(sup1), 62-72. doi:10.1080/01490419.2014.1001504
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., & Callahan, P. S. (2001). Chapter 1 Satellite Altimetry. In L.-L. Fu & A. Cazenave (Eds.), International Geophysics (Vol. 69, pp. 1-ii): Academic Press.
Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216. doi:https://doi.org/10.1016/j.pocean.2011.01.002
Chelton, D. B., Walsh, E. J., & MacArthur, J. L. (1989). Pulse Compression and Sea Level Tracking in Satellite Altimetry.pdf>. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 6, 407-438.
Chen, J. L., Shum, C. K., Wilson, C. R., Chambers, D. P., & Tapley, B. D. (2000). Seasonal sea level change from TOPEX/Poseidon observation and thermal contribution. Journal of Geodesy, 73(12), 638-647. doi:10.1007/s001900050002
Cheng, X., Xie, S.-P., Du, Y., Wang, J., Chen, X., & Wang, J. (2016). Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dynamics, 46(9), 3113-3126. doi:10.1007/s00382-015-2756-1
Cheng, Y., Xu, Q., & Li, X. (2018). Spatio-Temporal Variability of Annual Sea Level Cycle in the Baltic Sea. Remote Sensing, 10(4). doi:10.3390/rs10040528
Chowdhury, P., & Behera, M. R. (2015). A Study on Regional Sea Level Variation Along the Indian Coast. Procedia Engineering, 116, 1078-1084. doi:10.1016/j.proeng.2015.08.348
Church, J., White, N., Coleman, R., Lambeck, K., & Mitrovica, J. (2004). Estimates of the Regional Distribution of Sea Level Rise over the 1950 2000 Period. Journal of Climate - J CLIMATE, 17, 2609-2625. doi:10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea Level Change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Church, J. A., & White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33(1), n/a-n/a. doi:10.1029/2005gl024826
Church, J. A., & White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, 32(4-5), 585-602. doi:10.1007/s10712-011-9119-1
Churchill, J. H., Abualnaja, Y., Limeburner, R., & Nellayaputhenpeedika, M. (2018). The dynamics of weather-band sea level variations in the Red Sea. Regional Studies in Marine Science, 24, 336-342. doi:10.1016/j.rsma.2018.09.006
Clark, J. R. (2018). Coastal zone management handbook: CRC press.
Cohen, J. E., Small, C., Mellinger, A., Gallup, J., & Sachs, J. (1997). Estimates of coastal populations. SCIENCE, 278(5341), 1209-1213.
Crétaux, J.-F., & Birkett, C. (2006). Lake studies from satellite radar altimetry. Comptes Rendus Geoscience, 338(14), 1098-1112. doi:https://doi.org/10.1016/j.crte.2006.08.002
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K., & Jensen, J. (2019). Persistent acceleration in global sea-level rise since the 1960s. Nature Climate Change, 9(9), 705-710. doi:10.1038/s41558-019-0531-8
Davis, C. H. (1997). A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeter. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 974 - 979.
Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., & Bauer, d. P. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.
Deng, X., Featherstone, W., Hwang, C.-w., & Berry, P. (2002). Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4), 249-271.
Dettmering, D., Schwatke, C., Boergens, E., & Seitz, F. (2016). Potential of ENVISAT Radar Altimetry for Water Level Monitoring in the Pantanal Wetland. Remote Sensing, 8(7). doi:10.3390/rs8070596
Dettmering, D., Wynne, A., Müller, F., Passaro, M., & Seitz, F. (2018). Lead Detection in Polar Oceans—A Comparison of Different Classification Methods for Cryosat-2 SAR Data. Remote Sensing, 10(8). doi:10.3390/rs10081190
Dibarboure, G., Lamy, A., Pujol, M.-I., & Jettou, G. (2018). The Drifting Phase of SARAL: Securing Stable Ocean Mesoscale Sampling with an Unmaintained Decaying Altitude. Remote Sensing, 10(7). doi:10.3390/rs10071051
Dinardo, S. (2020). Techniques and Applications for Satellite SAR Altimetry over water, land and ice (Vol. 56): Technische Universität.
Dinardo, S., Lucas, B., & Benveniste, J. (2015). SENTINEL-3 STM SAR OCEAN RETRACKING ALGORITHM AND SAMOSA MODEL. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). doi:10.1109/IGARSS.2015.7327036
Douglas, B. C. (1991). Global sea level rise. Journal of Geophysical Research: Oceans, 96(C4), 6981-6992. doi:https://doi.org/10.1029/91JC00064
Douglas, B. C. (2001). Chapter 3 Sea level change in the era of the recording tide gauge. In B. C. Douglas, M. S. Kearney, & S. P. Leatherman (Eds.), International Geophysics (Vol. 75, pp. 37-64): Academic Press.
Dubey, A. K., Gupta, P., Dutta, S., & Singh, R. P. (2015). Water Level Retrieval Using SARAL/AltiKa Observations in the Braided Brahmaputra River, Eastern India. Marine Geodesy, 38(sup1), 549-567. doi:10.1080/01490419.2015.1008156
Dufau, C., Martin-Puig, C., & Moreno, L. (2011). User Requirements in the Coastal Ocean for Satellite Altimetry. In S. Vignudelli, A. G. Kostianoy, P. Cipollini, & J. Benveniste (Eds.), Coastal Altimetry (pp. 51-60). Berlin, Heidelberg: Springer Berlin Heidelberg.
El Raey, M. (2010). Impact of Sea Level Rise on the Arab Region.
Elmahdy, S., Ali, T., & Mohamed, M. (2021). Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model. Remote Sensing, 13(12). doi:10.3390/rs13122300
ESA. (2014). CryoSat Product Handbook. European Space Agency and University College London.
Ewert, H., Groh, A., & Dietrich, R. (2012). Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. Journal of Geodynamics, 59-60, 111-123. doi:10.1016/j.jog.2011.06.003
Ezer, T., & Corlett, W. B. (2012). Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophysical Research Letters, 39(19). doi:https://doi.org/10.1029/2012GL053435
Feng, W. (2014). Regional terrestrial water storage and sea level variations inferred from satellite gravimetry.
Feng, X., Tsimplis, M. N., Marcos, M., Calafat, F. M., Zheng, J., Jordà, G., & Cipollini, P. (2015). Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific. Journal of Geophysical Research: Oceans, 120(10), 7091-7112. doi:https://doi.org/10.1002/2015JC011154
Frappart, F., Calmant, S., Cauhope, M., Seyler, F., & Cazenave, A. (2006). Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100(2), 252-264. doi:10.1016/j.rse.2005.10.027
Frappart, F., Fatras, C., Mougin, E., Marieu, V., Diepkilé, A. T., Blarel, F., & Borderies, P. (2015). Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa. Physics and Chemistry of the Earth, Parts A/B/C, 83-84, 96-110. doi:10.1016/j.pce.2015.05.001
Göttl, F., Dettmering, D., Müller, F., & Schwatke, C. (2016). Lake Level Estimation Based on CryoSat-2 SAR Altimetry and Multi-Looked Waveform Classification. Remote Sensing, 8(11). doi:10.3390/rs8110885
Gomez-Enri, J., Vignudelli, S., Quartly, G. D., Gommenginger, C. P., Cipollini, P., Challenor, P. G., & Benveniste, J. (2010). Modeling Envisat RA-2 Waveforms in the Coastal Zone: Case Study of Calm Water Contamination. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 7(3), 474-478. doi:10.1109/lgrs.2009.2039193
Gommenginger, C., Martin-Puig, C., Laiba, A., & Raney, R. (2013). Review of state of knowledge for SAR altimetry over ocean. Report of the EUMETSAT JASON-CS SAR mode error budget study.
Gommenginger, C., Thibaut, P., Fenoglio, L., Quartly, G., Deng, X., Gomez-Enri, J., Challenor, P., & Gao, Y. (2011). Coastal Altimetry. In (pp. 61-101).
Good, S. A., Martin, M. J., & Rayner, N. A. (2013). EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12), 6704-6716. doi:https://doi.org/10.1002/2013JC009067
Guo, J., Chang, X., Gao, Y., Sun, J., & Hwang, C. (2009). Lake Level Variations Monitored With Satellite Altimetry Waveform Retracking. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(2), 80-86. doi:10.1109/jstars.2009.2021673
Haijun, Y., & Qiong, Z. (2003). On the decadal and interdecadal variability in the Pacific Ocean. Advances in Atmospheric Sciences, 20(2), 173-184. doi:10.1007/s00376-003-0002-y
Hamlington, B. D., Cheon, S. H., Thompson, P. R., Merrifield, M. A., Nerem, R. S., Leben, R. R., & Kim, K. Y. (2016). An ongoing shift in Pacific Ocean sea level. Journal of Geophysical Research: Oceans, 121(7), 5084-5097. doi:10.1002/2016jc011815
Harvey, K., & Grabs, W. (2003). Report of the GCOS/GTOS/HWRP Expert Meeting on Hydrological Data for Global Studies. Report GCOS, 84.
Hassanzadeh, S., Kiasatpour, A., & Hosseinibalam, F. (2007). Sea-level response to atmospheric forcing along the north coast of Persian Gulf. Meteorology and Atmospheric Physics, 95, 223-237. doi:10.1007/s00703-006-0213-8
Helm, V., Humbert, A., & Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 1539-1559. doi:10.5194/tc-8-1539-2014
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. doi:10.1098/rspa.1998.0193
Huang, N. E., Wu, M.-L. C., Long, S. R., Shen, S. S. P., Qu, W., Gloersen, P., & Fan, K. L. (2003). A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2037), 2317-2345. doi:10.1098/rspa.2003.1123
Huang, Q., Long, D., Du, M., Zeng, C., Li, X., Hou, A., & Hong, Y. (2018). An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data. Remote Sensing of Environment, 211, 112-128.
Hwang, C., Cheng, Y.-S., Han, J., Kao, R., Huang, C.-Y., Wei, S.-H., & Wang, H. (2016). Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication. Remote Sensing, 8(6). doi:10.3390/rs8060446
Hwang, C., Cheng, Y.-S., Yang, W.-H., Zhang, G., Huang, Y.-R., Shen, W.-B., & Pan, Y. (2019). Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 altimeters. Terr. Atmos. Ocean Sci, 30, 1-18.
Hwang, C., & Hsu, H. Y. (2008). Shallow‐water gravity anomalies from satellite altimetry: Case studies in the east china sea and Taiwan strait. Journal of the Chinese Institute of Engineers, 31(5), 841-851.
Hwang, C., Peng, M.-F., Ning, J., Luo, J., & Sui, C.-H. (2005). Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophysical Journal International, 161(1), 1-11. doi:10.1111/j.1365-246X.2005.02518.x
Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D. L., Sneed, M., Hung, W.-C., Cheng, Y.-S., & Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific Reports, 6(1), 1-12.
Idžanović, M., Ophaug, V., & Andersen, O. B. (2018). Coastal sea level from CryoSat-2 SARIn altimetry in Norway. Advances in Space Research, 62(6), 1344-1357. doi:10.1016/j.asr.2017.07.043
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley Eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
IPCC. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., & Sato, K. (2017). Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163-167. doi:10.2151/sola.2017-030
Jevrejeva, S., Moore, J. C., Grinsted, A., & Woodworth, P. L. (2008). Recent global sea level acceleration started over 200 years ago? Geophysical Research Letters, 35(8). doi:10.1029/2008gl033611
Jiang, L., Nielsen, K., Andersen, O. B., & Bauer-Gottwein, P. (2017). Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544, 109-124. doi:10.1016/j.jhydrol.2016.11.024
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kandasamy, S., Baret, F., Verger, A., Neveux, P., & Weiss, M. (2013). A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences, 10(6), 4055-4071. doi:10.5194/bg-10-4055-2013
Kao, H.-C., Kuo, C.-Y., Tseng, K.-H., Shum, C. K., Tseng, T.-P., Jia, Y.-Y., Yang, T.-Y., Ali, T. A., Yi, Y., & Hussain, D. (2019). Assessment of Cryosat-2 and SARAL/AltiKa altimetry for measuring inland water and coastal sea level variations: A case study on Tibetan Plateau lake and Taiwan Coast. Marine Geodesy, 42(4), 327-343. doi:10.1080/01490419.2019.1623352
Khalilabadi, M., & Mansoury, D. (2013). Effect of super cyclone "GONU" on sea level variation along Iranian coastlines. Indian Journal of Marine Sciences, 42, 470-475.
Khanna, P., Petrovic, A., Ramdani, A. I., Homewood, P., Mettraux, M., & Vahrenkamp, V. (2021). Mid-Holocene to present circum-Arabian sea level database: Investigating future coastal ocean inundation risk along the Arabian plate shorelines. Quaternary Science Reviews, 261. doi:10.1016/j.quascirev.2021.106959
Kleinherenbrink, M., Ditmar, P. G., & Lindenbergh, R. C. (2014). Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sensing of Environment, 152, 38-50. doi:10.1016/j.rse.2014.05.014
Kong, Y.-l., Meng, Y., Li, W., Yue, A.-z., & Yuan, Y. (2015). Satellite Image Time Series Decomposition Based on EEMD. Remote Sensing, 7(11). doi:10.3390/rs71115583
Kuang, X., & Jiao, J. J. (2016). Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 121(8), 3979-4007. doi:https://doi.org/10.1002/2015JD024728
Kuo, C.-Y., Kao, H.-C., Lee, H., Cheng, K.-C., & Lin, L.-C. (2012). Assessment of Radar Waveform Retracked Jason-2 Altimetry Sea Surface Heights Near Taiwan Coastal Ocean. Marine Geodesy, 35(2), 188-197. doi:10.1080/01490419.2011.637861
Kuo, C.-Y., Yang, T. Y., Kao, H. C., Wang, C. K., Lan, W. H., & Tseng, H. Z. (2015). Improvement of Envisat Altimetric Measurements in Taiwan Coastal Oceans by a Developed Waveform Retracking System. Journal of Environmental Informatics. doi:10.3808/jei.201500324
Kuo, C., Shum, C., Braun, A., & Mitrovica, J. (2004). Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophysical Research Letters, 31.
Kuo, C. Y., Shum, C. K., Braun, A., Cheng, K.-C., & Yi, Y. (2008). Vertical Motion Determined Using Satellite Altimetry and Tide Gauges. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEAN SCI, 19. doi:10.3319/TAO.2008.19.1-2.21(SA)
López-García, P., Gómez-Enri, J., & Muñoz-Pérez, J. J. (2019). Accuracy assessment of wave data from altimeter near the coast. Ocean Engineering, 178, 229-232. doi:10.1016/j.oceaneng.2019.03.009
Lan, W.-H., Kuo, C.-Y., Kao, H.-C., Lin, L.-C., Shum, C. K., Tseng, K.-H., & Chang, J.-C. (2017). Impact of Geophysical and Datum Corrections on Absolute Sea-Level Trends from Tide Gauges around Taiwan, 1993–2015. Water, 9(7). doi:10.3390/w9070480
Lan, W.-H. (2018). Assessment of Seasonal-to-Decadal Variability and Trends of Regional Sea Level in the North Pacific Ocean Using Satellite Altimetry and Tide Gauges. Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan.
Lan, W.-H., Kuo, C.-Y., Lin, L.-C., & Kao, H.-C. (2021). Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method. Remote Sensing, 13(4). doi:10.3390/rs13040730
Lee, H., Shum, C. K., Emery, W., Calmant, S., Deng, X., Kuo, C.-Y., Roesler, C., & Yi, Y. (2010). Validation of Jason-2 Altimeter Data by Waveform Retracking over California Coastal Ocean. Marine Geodesy, 33(sup1), 304-316. doi:10.1080/01490419.2010.488982
Lee, H., Shum, C. K., Yi, Y., Braun, A., & Kuo, C.-Y. (2008). Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land. Journal of Geodynamics, 46(3-5), 182-193. doi:10.1016/j.jog.2008.05.001
Legresy, B., & Remy, F. (1997). altimetric observations of surface characteristics of the antarctic ice sheet. Journal of Glaciology, 43(144), 265-275.
Liu, Y., Zhang, Y., Zhu, J., Huang, K., Zu, J., Chen, N., Cong, N., & Stegehuis, A. I. (2019). Warming slowdown over the Tibetan plateau in recent decades. Theoretical and Applied Climatology, 135(3), 1375-1385. doi:10.1007/s00704-018-2435-3
Llovel, W., Guinehut, S., & Cazenave, A. (2010). Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dynamics, 60(5), 1193-1204. doi:10.1007/s10236-010-0324-0
Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transasctions on Pattern Analysies and Machine Inteligence. In: IEEE Press.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production*. Bulletin of the American Meteorological Society, 78(6), 1069-1080. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Martin, T. V., Zwally, H. J., Brenner, A. C., & Bindschadler, R. A. (1983). Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical Research, 88(C3). doi:10.1029/JC088iC03p01608
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., & Wittenberg, A. T. (2013). Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past, 9(5), 2269-2284. doi:10.5194/cp-9-2269-2013
Michel, A., Flament, T., & Rémy, F. (2014). Study of the Penetration Bias of ENVISAT Altimeter Observations over Antarctica in Comparison to ICESat Observations. Remote Sensing, 6(10), 9412-9434. doi:10.3390/rs6109412
Moore, P., Birkinshaw, S. J., Ambrózio, A., Restano, M., & Benveniste, J. (2018). CryoSat-2 Full Bit Rate Level 1A processing and validation for inland water applications. Advances in Space Research, 62(6), 1497-1515. doi:10.1016/j.asr.2017.12.015
Nandkeolyar, N., Raman, M., Kiran, G. S., & Ajai. (2013). Comparative Analysis of Sea Surface Temperature Pattern in the Eastern and Western Gulfs of Arabian Sea and the Red Sea in Recent Past Using Satellite Data. International Journal of Oceanography, 2013, 501602. doi:10.1155/2013/501602
Othman, A., Sultan, M., Becker, R., Alsefry, S., Alharbi, T., Gebremichael, E., Alharbi, H., & Abdelmohsen, K. (2018). Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation. Surv Geophys, 39(3), 543-566. doi:10.1007/s10712-017-9458-7
Parker, B. (2005). Tides. In M. L. Schwartz (Ed.), Encyclopedia of Coastal Science (pp. 987-996). Dordrecht: Springer Netherlands.
Parker, B. B. (2007). Tidal analysis and prediction.
Passaro, M., Cipollini, P., & Benveniste, J. (2015). Annual sea level variability of the coastal ocean: The Baltic Sea-North Sea transition zone. Journal of Geophysical Research: Oceans, 120(4), 3061-3078. doi:10.1002/2014jc010510
Passaro, M., Rose, S. K., Andersen, O. B., Boergens, E., Calafat, F. M., Dettmering, D., & Benveniste, J. (2018). ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sensing of Environment, 211, 456-471. doi:10.1016/j.rse.2018.02.074
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), n/a-n/a. doi:10.1029/2011jb008916
Peng, F., & Deng, X. (2020). Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region. Remote Sensing of Environment, 237. doi:10.1016/j.rse.2019.111548
Permanent Service for Mean Sea Level (PSMSL). Available online: http://www.psmsl.org/data/obtaining/ (accessed on 5 March 2018).
Pugh, D., & Woodworth, P. (2014). Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press.
Pugh, D., & Abualnaja, Y. (2015). Sea-level changes. In I. C. F. Stewart & N. M. A. Rasul (Eds.), Red Sea: The formation, morphology, oceanography and environment of a young ocean (Vol. 18, pp. 317– 328). Heildelberg: Berlin.
Pujol, M. I., Schaeffer, P., Faugère, Y., Raynal, M., Dibarboure, G., & Picot, N. (2018). Gauging the Improvement of Recent Mean Sea Surface Models: A New Approach for Identifying and Quantifying Their Errors. Journal of Geophysical Research: Oceans, 123(8), 5889-5911. doi:10.1029/2017jc013503
Qian, C., Wu, Z., Fu, C., & Zhou, T. (2010). On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Advances in Atmospheric Sciences, 27(5), 1169-1182. doi:10.1007/s00376-009-9121-4
Röhrs, J., & Kaleschke, L. (2012). An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery. The Cryosphere, 6(2), 343-352. doi:10.5194/tc-6-343-2012
Rémy, F., Flament, T., Michel, A., & Verron, J. (2014). Ice sheet survey over Antarctica using satellite altimetry: ERS-2, Envisat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit. International Journal of Remote Sensing, 35(14), 5497-5512. doi:10.1080/01431161.2014.926419
Raney, R. K. (1998). The Delay/Doppler Radar Altimeter. IEEE Transactions on Geoscience and Remote Sensing, 36, 1578–1588.
Rasul, N. M. A., Stewart, I. C. F., & Nawab, Z. A. (2015). Introduction to the Red Sea: Its Origin, Structure, and Environment. In N. M. A. Rasul & I. C. F. Stewart (Eds.), The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin (pp. 1-28). Berlin, Heidelberg: Springer Berlin Heidelberg.
Rosmorduc, V., Benveniste, J., Bronner, E., Dinardo, S., Lauret, O., Maheu, C., Milagro-Pérez, M., & Picot, N. (2011). Radar Altimetry Tutorial.
Sandwell, D. T., & Smith, W. H. F. (2005). Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophysical Journal International, 163(1), 79-89. doi:10.1111/j.1365-246X.2005.02724.x
Saraceno, M., Strub, P. T., & Kosro, P. M. (2008). Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges. Journal of Geophysical Research, 113(C11). doi:10.1029/2008jc004756
Schneider, R., Ridler, M.-E., Godiksen, P. N., Madsen, H., & Bauer-Gottwein, P. (2018). A data assimilation system combining CryoSat-2 data and hydrodynamic river models. Journal of Hydrology, 557, 197-210. doi:10.1016/j.jhydrol.2017.11.052
Schwatke, C., Dettmering, D., Börgens, E., & Bosch, W. (2015). Potential of SARAL/AltiKa for Inland Water Applications. Marine Geodesy, 38(sup1), 626-643. doi:10.1080/01490419.2015.1008710
Seeber, G. (2008). Satellite Geodesy: De Gruyter.
Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N. K., Durvasula, S. R. V., Jones, D. A., Loughland, R., Medio, D., Nithyanandan, M., Pilling, G. M., Polikarpov, I., Price, A. R. G., Purkis, S., Riegl, B., Saburova, M., Namin, K. S., Taylor, O., Wilson, S., & Zainal, K. (2010). The Gulf: A young sea in decline. Marine Pollution Bulletin, 60(1), 13-38. doi:https://doi.org/10.1016/j.marpolbul.2009.10.017
Shu, S., Liu, H., Beck, R., Frappart, F., Korhonen, J., Lan, M., Xu, M., Yang, B., & Huang, Y. (2020). Evaluation of Historic and Operational Satellite Radar Altimetry Missions for Constructing Consistent Long-term Lake Water Level Records.
Shum, C., Yi, Y., Cheng, K., Kuo, C., Braun, A., Calmant, S., & Chambers, D. (2003). Calibration of JASON-1 Altimeter over Lake Erie Special Issue: Jason-1 Calibration/Validation. Marine Geodesy, 26(3-4), 335-354. doi:10.1080/714044525
Shum, C., Yi, Y., Cheng, K., Kuo, C., Braun, A., Calmant, S., & Chambers, D. (2010). Calibration of JASON-1 Altimeter over Lake Erie Special Issue: Jason-1 Calibration/Validation. Marine Geodesy, 26(3-4), 335-354. doi:10.1080/714044525
Siddig, N. A., Al-Subhi, A. M., & Alsaafani, M. A. (2019). Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia, 61(4), 401-411. doi:10.1016/j.oceano.2019.05.003
Simon, J. H., Andrew, M., Philip, L. W., Lesley, J. R., Mark, E. T., Elizabeth, B., Peter, R. F., Kathleen, M. G., Svetlana, J., & Jeff, P. (2013). New Data Systems and Products at the Permanent Service for Mean Sea Level. Journal of Coastal Research, 29(3), 493-504. doi:10.2112/JCOASTRES-D-12-00175.1
Sofianos, S. S., & Johns, W. E. (2001). Wind induced sea level variability in the Red Sea. Geophysical Research Letters, 28(16), 3175-3178. doi:10.1029/2000gl012442
Solomon, S. (2007). Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge : Cambridge university press.
Song, C., & Sheng, Y. (2015). Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Climatic Change, 135(3-4), 493-507. doi:10.1007/s10584-015-1578-9
Steele, M., & Ermold, W. (2007). Steric Sea Level Change in the Northern Seas. Journal of Climate, 20(3), 403-417. doi:10.1175/JCLI4022.1
Strassburg, M. W., Hamlington, B. D., Leben, R. R., Manurung, P., Lumban Gaol, J., Nababan, B., Vignudelli, S., & Kim, K. Y. (2015). Sea level trends in Southeast Asian seas. Clim. Past, 11(5), 743-750. doi:10.5194/cp-11-743-2015
Sturges, W., & Douglas, B. C. (2011). Wind effects on estimates of sea level rise. Journal of Geophysical Research: Oceans, 116(C6). doi:https://doi.org/10.1029/2010JC006492
Su, X., Shum, C. K., Guo, J., Howat, I. M., Kuo, C., Jezek, K. C., Duan, J., & Yi, Y. (2018). High-Resolution Interannual Mass Anomalies of the Antarctic Ice Sheet by Combining GRACE Gravimetry and ENVISAT Altimetry. IEEE Transactions on Geoscience and Remote Sensing, 56(1), 539-546. doi:10.1109/tgrs.2017.2751070
Sultan, S. A. R., Ahmad, F., Elghribi, N. M., & Al-Subhi, A. M. (1995). An analysis of Arabian Gulf monthly mean sea level. Continental Shelf Research, 15(11), 1471-1482. doi:https://doi.org/10.1016/0278-4343(94)00081-W
Sultan, S. A. R., Moamar, M. O., El-Ghribi, N. M., & Williams, R. (2000). Sea level changes along the Saudi coast of the Arabian Gulf. Indian Journal of Marine Sciences, 29, 191-200.
Theia. (2016). Hydroweb Product User Manual THEIA-MU-42-0282-CNES. V1.0. Retrieved from https://www.theia-land.fr/sites/default/files/imce/produits/Handbook_Hydroweb%20V1.0.pdf
Tilling, R. L., Ridout, A., & Shepherd, A. (2018). Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Advances in Space Research, 62(6), 1203-1225. doi:10.1016/j.asr.2017.10.051
Torres, R. R., & Tsimplis, M. N. (2012). Seasonal sea level cycle in the Caribbean Sea. Journal of Geophysical Research: Oceans, 117(C7), n/a-n/a. doi:10.1029/2012jc008159
Tourian, M. J. (2012). Controls on Satellite Altimetry Over Inland Water Surfaces for Hydrological Purposes: Universitätsbibliothek der Universität Stuttgart.
Trenberth, K. E., Large, W. G., & Olson, J. G. (1990). The Mean Annual Cycle in Global Ocean Wind Stress. Journal of Physical Oceanography, 20(11), 1742-1760. doi:10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2
Tseng, K.-H., Chang, C.-P., Shum, C., Kuo, C.-Y., Liu, K.-T., Shang, K., Jia, Y., & Sun, J. (2016). Quantifying Freshwater Mass Balance in the Central Tibetan Plateau by Integrating Satellite Remote Sensing, Altimetry, and Gravimetry. Remote Sensing, 8(6). doi:10.3390/rs8060441
Tseng, K.-H., Shum, C. K., Yi, Y., Emery, W. J., Kuo, C.-Y., Lee, H., & Wang, H. (2014). The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 991-1001. doi:10.1109/tgrs.2013.2246572
Tseng, K.-H., Shum, C. K., Yi, Y., Fok, H. S., Kuo, C.-Y., Lee, H., Cheng, X., & Wang, X. (2013). Envisat Altimetry Radar Waveform Retracking of Quasi-Specular Echoes over the Ice-Covered Qinghai Lake. Terrestrial, Atmospheric and Oceanic Sciences, 24(4-1). doi:10.3319/TAO.2012.12.03.01(TibXS)
Tsimplis, M. N., & Woodworth, P. L. (1994). The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research, 99(C8). doi:10.1029/94jc01115
Unnikrishnan, A. S., & Shankar, D. (2007). Are sea-level-rise trends along the coasts of the north Indian Ocean consistent with global estimates? Global and Planetary Change, 57(3-4), 301-307. doi:10.1016/j.gloplacha.2006.11.029
Vaughan, G. O., Al-Mansoori, N., & Burt, J. A. (2019). The Arabian Gulf. In World Seas: an Environmental Evaluation (pp. 1-23).
Verron, J., Bonnefond, P., Aouf, L., Birol, F., Bhowmick, S., Calmant, S., Conchy, T., Crétaux, J.-F., Dibarboure, G., Dubey, A., Faugère, Y., Guerreiro, K., Gupta, P., Hamon, M., Jebri, F., Kumar, R., Morrow, R., Pascual, A., Pujol, M.-I., Rémy, E., Rémy, F., Smith, W., Tournadre, J., & Vergara, O. (2018). The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Scientific Applications. Remote Sensing, 10(2). doi:10.3390/rs10020163
Verron, J., Sengenes, P., Lambin, J., Noubel, J., Steunou, N., Guillot, A., Picot, N., Coutin-Faye, S., Sharma, R., Gairola, R. M., Murthy, D. V. A. R., Richman, J. G., Griffin, D., Pascual, A., Rémy, F., & Gupta, P. K. (2015). The SARAL/AltiKa Altimetry Satellite Mission. Marine Geodesy, 38(sup1), 2-21. doi:10.1080/01490419.2014.1000471
Vignudelli, S., Birol, F., Benveniste, J., Raynal, M., & Roinard, H. (2019). Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surveys in Geophysics, 40, 1319. doi:10.1007/s10712-019-09569-1
Vignudelli, S., Cipollini, P., Roblou, L., Lyard, F., Gasparini, G. P., Manzella, G., & Astraldi, M. (2005). Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea). Geophysical Research Letters, 32(7), n/a-n/a. doi:10.1029/2005gl022602
Vignudelli, S., Kostianoy, A. G., Cipollini, P., & Benveniste, J. (2011). Coastal altimetry: Springer Science & Business Media.
Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K., & Knudsen, P. (2015). CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges–Brahmaputra River basin. Remote Sensing of Environment, 168, 80-89. doi:10.1016/j.rse.2015.05.025
Villadsen, H., Deng, X., Andersen, O. B., Stenseng, L., Nielsen, K., & Knudsen, P. (2016). Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of Hydrology, 537, 234-247. doi:10.1016/j.jhydrol.2016.03.051
Vinogradov, S. V., & Ponte, R. M. (2010). Annual cycle in coastal sea level from tide gauges and altimetry. Journal of Geophysical Research, 115(C4). doi:10.1029/2009jc005767
Vinogradov, S. V., Ponte, R. M., Heimbach, P., & Wunsch, C. (2008). The mean seasonal cycle in sea level estimated from a data-constrained general circulation model. Journal of Geophysical Research: Oceans, 113(C3). doi:https://doi.org/10.1029/2007JC004496
Wahl, T., Calafat, F. M., & Luther, M. E. (2014). Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20thcentury. Geophysical Research Letters, 41(2), 491-498. doi:10.1002/2013gl058777
Wahr, J. M. (1985). Deformation induced by polar motion. Journal of Geophysical Research, 90(B11). doi:10.1029/JB090iB11p09363
Wang, G., Chen, X.-Y., Qiao, F.-L., Wu, Z., & Huang, N. E. (2010). ON INTRINSIC MODE FUNCTION. Advances in Adaptive Data Analysis, 02(03), 277-293. doi:10.1142/S1793536910000549
Wang, Y., Liu, H., Lin, P., & Yin, J. (2019). Record-low coastal sea levels in the Northeast Pacific during the winter of 2013–2014. Scientific Reports, 9(1), 3774. doi:10.1038/s41598-019-40397-w
Wernecke, A., & Kaleschke, L. (2015). Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width distribution. The Cryosphere, 9(5), 1955-1968. doi:10.5194/tc-9-1955-2015
Willis, J., Chambers, D., Kuo, C.-Y., & Shum, C. K. (2010). Global Sea Level Rise: Recent Progress and Challenges for the Decade to Come. Oceanography, 23(4), 26-37. doi:10.5670/oceanog.2010.03
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., & Wallis, D. W. (2006). CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Advances in Space Research, 37(4), 841-871. doi:10.1016/j.asr.2005.07.027
Wingham, D. J., Rapley, C. G., & Griffiths., H. (1986). New techniques in satellite altimeter tracking systems. Proceedings of IGARSS’86 Symposium, 1339–1344.
Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J., & Shum, C. K. (1998). Antarctic Elevation Change from 1992 to 1996. SCIENCE, 282(5388), 456-458.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., & Merrifield, M. A. (2019). Forcing Factors Affecting Sea Level Changes at the Coast. Surveys in Geophysics, 40(6), 1351-1397. doi:10.1007/s10712-019-09531-1
Woodworth, P. L., & Player, R. (2003). The Permanent Service for Mean Sea Level: An Update to the 21<sup>st</sup>Century. Journal of Coastal Research, 19(2), 287-295. Retrieved from http://www.jstor.org/stable/4299170
Woodworth, P. L., Tsimplis, M. N., Flather, R. A., & Shennan, I. (1999). A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophysical Journal International, 136(3), 651-670. doi:10.1046/j.1365-246x.1999.00751.x
Wu, C.-R. (2013). Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Progress in Oceanography, 110, 49-58. doi:https://doi.org/10.1016/j.pocean.2012.12.001
Wu, H., Kimball, J. S., Zhou, N., Alfieri, L., Luo, L., Du, J., & Huang, Z. (2019). Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP. Remote Sensing of Environment, 233, 111360. doi:https://doi.org/10.1016/j.rse.2019.111360
Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597-1611. doi:10.1098/rspa.2003.1221
Wu, Z., & Huang, N. E. (2009). ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis, 01(01), 1-41. doi:10.1142/S1793536909000047
Wu, Z., Schneider, E. K., Kirtman, B. P., Sarachik, E. S., Huang, N. E., & Tucker, C. J. (2008). The modulated annual cycle: an alternative reference frame for climate anomalies. Climate Dynamics, 31(7-8), 823-841. doi:10.1007/s00382-008-0437-z
Wunsch, C. (1972), Bermuda sea level in relation to tides, weather, and baroclinic fluctuations, Rev. Geophys., 10( 1), 1– 49, doi:10.1029/RG010i001p00001.
Wunsch, C., & Stammer, D. (1997). Atmospheric loading and the oceanic “inverted barometer” effect. Reviews of Geophysics, 35(1), 79-107.
Yang, L., Lin, M., Liu, Q., & Pan, D. (2012). A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. International Journal of Remote Sensing, 33(24), 7806-7819. doi:10.1080/01431161.2012.701350
Yang, Y., Hwang, C., Hsu, H.-J., Dongchen, E., & Wang, H. (2012). A subwaveform threshold retracker for ERS-1 altimetry: A case study in the Antarctic Ocean. Computers & Geosciences, 41, 88-98. doi:10.1016/j.cageo.2011.08.017
You, Q., Chen, D., Wu, F., Pepin, N., Cai, Z., Ahrens, B., Jiang, Z., Wu, Z., Kang, S., & AghaKouchak, A. (2020). Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 210, 103349. doi:https://doi.org/10.1016/j.earscirev.2020.103349
Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S. F. (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 115(7), 1733-1742. doi:https://doi.org/10.1016/j.rse.2011.03.005
Zhang, X., & Church, J. A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophysical Research Letters, 39(21), n/a-n/a. doi:10.1029/2012gl053240
Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like Interdecadal Variability: 1900–93. Journal of Climate, 10(5), 1004-1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
ZHAO Hongbin, G. Y., FAN Dongming, QIU Chunhong, SU Chunpeng, FANG Weihao. (2019). Seasonal sea level variations in the Red Sea inferred from satellite altimetry, GRACE and temperature and salinity data. Acta Geodaetica et Cartographica Sinica, 48(9), 1119-1128. doi:10.11947/j.AGCS.2019.20190034