簡易檢索 / 詳目顯示

研究生: 蔡岳峯
Tsai, Yueh-Feng
論文名稱: 離層對方形複合層板顫振行為之影響
Effect of delamination on flutter of composite laminated plates
指導教授: 蕭樂群
Shiau, Le-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 169
中文關鍵詞: 顫振有限條元法離層複合層板
外文關鍵詞: delamination, composite laminate, flutter, Finite Strip Method
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限條元法探討方形複合層板在中性面上含有離層且離層跨越整個長度方向時,離層對顫振邊界的影響。以線性結構理論、半穩定空氣動力學理論以及一致運動模型作為分析的基礎。文中探討層板於不同長寬比時離層長度、離層位置、疊層順序以及纖維角度對顫振邊界的影響。結果顯示離層長度、離層位置、疊層順序、長寬比以及纖維角度皆會影響其顫振邊界。以對稱Cross-ply層板而言,疊層順序的改變對於顫振邊界的影響,比離層長度及離層位置的影響要來的大。至於對稱Angle-ply層板,則由於纖維角度可任意改變,當離層發生時,層板的顫振行為隨纖維角度的改變而有較據烈的影響,尤其是在寬形層板的部份。

    The effect of delamination on the flutter boundary of a delaminated rectangular plate was investigated by Finite Strip Method. Linear structural theory, quasi-steady supersonic aerodynamic theory and a moving together model were empolyed for the analysis. The effects of delamination length, delamination location, stacking sequence, fiber orientation and aspect ratio on the flutter boundary of the composite laminates were studied. Results show that the above mentioned factors have considerable effect on the flutter boundary of the laminates. For symmetric cross-ply laminate, the effect of stacking sequence on the flutter boundary is more profound than that of the delamination length and the delamination location. For symmetric angle-ply laminate, because of the fiber angle can change arbitrarily, the behavior of flutter boundary is more complex due to the change of the fiber orientation, especially in the part of the wide shape laminate.

    中文摘要 英文摘要 誌謝 目錄 表目錄………………………………………………………………………Ⅰ 圖目錄………………………………………………………………………Ⅱ 符號說明…………………………………………………………………ⅤⅢ 第一章 緒論…………………………………………………………1 第二章 複合層板之有限條元………………………………………7 2.1複合層板之基本假設………………………………………………7 2.2複合層板之定義……………………………………………………8 2.3位移與形狀函數…………………………………………………11 2.3.1 y方向之位移形狀函數…………………………12 2.3.2 x方向內插函數之選取……………………………………12 2.3.3 x,y方向位移函數的組合…………………………………16 2.4由最小能量法推導有限條元……………………………………17 2.4.1應變與位移………………………………………………18 2.4.2應力與應變………………………………………………19 2.4.3勁度矩陣、負載矩陣之推導………………………………20 2.4.4質量矩陣之推導…………………………………………21 2.5平板條元勁度之組合……………………………………………22 第三章 複合層板之顫振分析……………………………………24 3.1理論依據…………………………………………………………24 3.2運動方程式之推導………………………………………………24 3.3顫振邊界之判斷準則……………………………………………28 第四章 分析模型與程式驗證……………………………………31 4.1離層層板之分析模型……………………………………………31 4.2離層層板之一致運動……………………………………………32 4.3程式驗證…………………………………………………………33 4.3.1等向性層板之靜態與動態驗證…………………………33 4.3.2正交性與異向性層板之靜態與動態驗證………………34 4.3.3等向性層板之顫振邊界驗證……………………………35 第五章 結果與討論………………………………………………40 5.1等向性離層層板之顫振分析……………………………………40 5.1.1離層長度對層板顫振邊界的影響………………………40 5.1.2離層位置對層板顫振邊界的影響………………………43 5.1.3長寬比對層板顫振邊界的影響…………………………45 5.2.CROSS PLY離層層板之顫振分析…………………………………47 5.2.1離層長度對層板顫振邊界的影響………………………47 5.2.1.1離層長度對(0/90)s層板顫振邊界的影響………47 5.2.1.2離層長度對(90/0)s層板顫振邊界的影響………48 5.2.2離層位置對層板顫振邊界的影響........................49 5.2.2.1離層位置對(0/90)s層板顫振邊界的影響………50 5.2.2.2離層位置對(90/0)s層板顫振邊界的影響………50 5.2.3長寬比對層板顫振邊界的影響…………………………52 5.2.3.1長寬比對(0/90)s層板顫振邊界的影響…………52 5.2.3.2長寬比對(90/0)s層板顫振邊界的影響…………53 5.2.4 彈性係數比值對層板顫振邊界的影響…………………54 5.3 ANGLE PLY離層層板之顫振分析…………………………………55 5.3.1離層長度對層板顫振邊界的影響………………………56 5.3.2離層位置對層板顫振邊界的影響………………………59 5.3.3長寬比對層板顫振邊界的影響…………………………63 5.3.4纖維角度對層板顫振邊界的影響………………………67 第六章 結論………………………………………………………74 參考文獻…………………………………………………………………155 附錄A……………………………………………………………158 附錄B……………………………………………………………165 自述……………………………………………………………………168 著作權聲明……………………………………………………………169

    1. B. N. Cox, ”Delamination and Buckling in 3D Composites,” Journal of Composite Materials, Vol.28, No.12, 1994.

    2. B. D. Davidson, ”Delamination Buckling: Theory and Experiment,” Journal of Composite Materials, Vol.25, 1991.

    3. Hsin-Piao Chen & David Leib, ”Dynamic Delamination Growth in Laminated Composite Structures,” Composite Science and Technology, 46, p.325-333, 1993.

    4. S. V. Kulkarni and D. Frederick, ”Frequency as a Parameter in Delamination Problems- A Preliminary Investigation,” Journal of Composite Materials, Vol.5, p.112, 1971.

    5. Tracy, J. J., D. J. Dimas and G. C. Pardoen., ”The Effect of Impact Damage on the Dynamic Properties of Laminated Composite plate,” Proceeding of the Fifth international Conference on Composite Materials, San Diego, CA, 1985.

    6. Tracy, J. J., ”Effect of delamination on the Natural Frequencies of Composite Laminates,” Journal of Composite Materials, Vol23, 1989.

    7. Y. K. Cheung, Finite Strip Method in Structural Analysis, Program Press, Oxford. 1976.

    8. Y. K. Cheung, Finite Strip Method in Structural Analysis, Program Press, Oxford. 1976.

    9. Y. K. Loo and A. R. Cusens, “Static and Dynamic Behavior of Rectangular Plates Using Higher Order Finite Strips”, Building Science, Vol. 7, pp.151~158, 1972.

    10. M. D. Olson, “Finite Element Applied to Panel Flutter”, AIAA J., Vol. 5, pp.2267~2270, 1967.

    11. V. K. Appa and B. R. Somashekar, “Application of Matrix Displacement Methods in the Study of Panel Flutter”, AIAA J., Vol. 7, pp.50~53, 1969.

    12. M. D. Olson, “Some Flutter Solution Using Finite Elements”, AIAA J., Vol. 8, pp.747~752, 1970.

    13. A. D. Han and T. Y. Yang, “Nonlinear Panel Flutter Using High order Triangular Finite Element”, AIAA J., Vol. 21, pp.1453~1461, 1983.

    14. L. C. Shiau, “Delamination Effect on Flutter of Homogeneous Laminated Plates” Journal of Aerospace Engineering, ASCE, Vol. 6, No. 3, pp.284~298, 1993.

    15. Chung Li Liao and Yee Win Sun, “Flutter Analysis of Stiffened Laminated Composite Plates and Shells in Supersonic Flow” AIAA J., pp.1897~1905, 1993

    16. 郭仕堯, “離層樑板顫振之有限元素法分析”, 國立成功大學航空太空研究所論文, 1995

    17. T. V. R. Chowdary, P. K. Sinha and S. Parthan, “Finite Element Flutter Analysis of Composite Skew Panels”, Computers and Structures, Vol. 58, pp.613~620, 1996

    18. Xinzhong Chen, Ahsan Kareem and Masaru Matsumoto, “Multimode coupled flutter and buffeting analysis of long span bridges”, Journal of Wind Engineering and Industrial Aerodynamics (89), pp.649~664, 2001

    19. Y. Odaka and H. Furuya, “Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter”, struct. Multidisc. Optim. (30), pp.437~446, 2005

    20. Nebojsa Sebastijanovic and Tianwei DiCarlo, “An eigenvector orientation approach for detection and control of panel flutter”, Smart Structures and Materials, pp.214~223, 2005

    21. E. H. Dowell, “Panel Flutter: A View of the Aeroelastic Stability of Plates and Shells”, AIAA J., Vol. 8, pp.385~399, 1970.

    22. C. J. Houbolt, “AStudy of Several Aerothermoelastic Problems of Aircraft Structures in High Speed Flight”, Ph. D. thesis, No. 2760, 1958, Swiss Federal Institute of Technology, Zurish, Switzerland.

    23. R. L. Bisplinghoff and H. Ashley, “Principle of Aeroelasticity”. New York, John Wiley and Sons Incorporated, 1962

    24. R. W. Clough and J. Penzien, “Dynamic of Structure”, Mc Graw-Hill Incorporated,1975

    25. A. C. Ugural, ”Stresses in Plates and Shells,”, Mc Graw-Hill Incorporated, 1981.

    26. J. M. Whitney, ”Structural analysis of laminated anisotropic plates,”, Technomic Publishing Company, 1987.

    27. 全湘偉, “以有限帶數法解析層板之撓曲、挫曲與振動”, 國立成功大學航空太空研究所論文, 1985

    28. M. D. Olson, “Some Flutter Solution Using Finite Elements”, AIAA J., Vol. 8, pp.747~752, 1970.

    29. G. Sander, X. Bon, and M.Gerandin, “Finite Element Analysis of Supersonic Panel Flutter”, Int. J. Numer. Engng., Vol.7, No.3, pp.379~394, 1973.

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE