| 研究生: |
蔡岳峯 Tsai, Yueh-Feng |
|---|---|
| 論文名稱: |
離層對方形複合層板顫振行為之影響 Effect of delamination on flutter of composite laminated plates |
| 指導教授: |
蕭樂群
Shiau, Le-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 顫振 、有限條元法 、離層 、複合層板 |
| 外文關鍵詞: | delamination, composite laminate, flutter, Finite Strip Method |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以有限條元法探討方形複合層板在中性面上含有離層且離層跨越整個長度方向時,離層對顫振邊界的影響。以線性結構理論、半穩定空氣動力學理論以及一致運動模型作為分析的基礎。文中探討層板於不同長寬比時離層長度、離層位置、疊層順序以及纖維角度對顫振邊界的影響。結果顯示離層長度、離層位置、疊層順序、長寬比以及纖維角度皆會影響其顫振邊界。以對稱Cross-ply層板而言,疊層順序的改變對於顫振邊界的影響,比離層長度及離層位置的影響要來的大。至於對稱Angle-ply層板,則由於纖維角度可任意改變,當離層發生時,層板的顫振行為隨纖維角度的改變而有較據烈的影響,尤其是在寬形層板的部份。
The effect of delamination on the flutter boundary of a delaminated rectangular plate was investigated by Finite Strip Method. Linear structural theory, quasi-steady supersonic aerodynamic theory and a moving together model were empolyed for the analysis. The effects of delamination length, delamination location, stacking sequence, fiber orientation and aspect ratio on the flutter boundary of the composite laminates were studied. Results show that the above mentioned factors have considerable effect on the flutter boundary of the laminates. For symmetric cross-ply laminate, the effect of stacking sequence on the flutter boundary is more profound than that of the delamination length and the delamination location. For symmetric angle-ply laminate, because of the fiber angle can change arbitrarily, the behavior of flutter boundary is more complex due to the change of the fiber orientation, especially in the part of the wide shape laminate.
1. B. N. Cox, ”Delamination and Buckling in 3D Composites,” Journal of Composite Materials, Vol.28, No.12, 1994.
2. B. D. Davidson, ”Delamination Buckling: Theory and Experiment,” Journal of Composite Materials, Vol.25, 1991.
3. Hsin-Piao Chen & David Leib, ”Dynamic Delamination Growth in Laminated Composite Structures,” Composite Science and Technology, 46, p.325-333, 1993.
4. S. V. Kulkarni and D. Frederick, ”Frequency as a Parameter in Delamination Problems- A Preliminary Investigation,” Journal of Composite Materials, Vol.5, p.112, 1971.
5. Tracy, J. J., D. J. Dimas and G. C. Pardoen., ”The Effect of Impact Damage on the Dynamic Properties of Laminated Composite plate,” Proceeding of the Fifth international Conference on Composite Materials, San Diego, CA, 1985.
6. Tracy, J. J., ”Effect of delamination on the Natural Frequencies of Composite Laminates,” Journal of Composite Materials, Vol23, 1989.
7. Y. K. Cheung, Finite Strip Method in Structural Analysis, Program Press, Oxford. 1976.
8. Y. K. Cheung, Finite Strip Method in Structural Analysis, Program Press, Oxford. 1976.
9. Y. K. Loo and A. R. Cusens, “Static and Dynamic Behavior of Rectangular Plates Using Higher Order Finite Strips”, Building Science, Vol. 7, pp.151~158, 1972.
10. M. D. Olson, “Finite Element Applied to Panel Flutter”, AIAA J., Vol. 5, pp.2267~2270, 1967.
11. V. K. Appa and B. R. Somashekar, “Application of Matrix Displacement Methods in the Study of Panel Flutter”, AIAA J., Vol. 7, pp.50~53, 1969.
12. M. D. Olson, “Some Flutter Solution Using Finite Elements”, AIAA J., Vol. 8, pp.747~752, 1970.
13. A. D. Han and T. Y. Yang, “Nonlinear Panel Flutter Using High order Triangular Finite Element”, AIAA J., Vol. 21, pp.1453~1461, 1983.
14. L. C. Shiau, “Delamination Effect on Flutter of Homogeneous Laminated Plates” Journal of Aerospace Engineering, ASCE, Vol. 6, No. 3, pp.284~298, 1993.
15. Chung Li Liao and Yee Win Sun, “Flutter Analysis of Stiffened Laminated Composite Plates and Shells in Supersonic Flow” AIAA J., pp.1897~1905, 1993
16. 郭仕堯, “離層樑板顫振之有限元素法分析”, 國立成功大學航空太空研究所論文, 1995
17. T. V. R. Chowdary, P. K. Sinha and S. Parthan, “Finite Element Flutter Analysis of Composite Skew Panels”, Computers and Structures, Vol. 58, pp.613~620, 1996
18. Xinzhong Chen, Ahsan Kareem and Masaru Matsumoto, “Multimode coupled flutter and buffeting analysis of long span bridges”, Journal of Wind Engineering and Industrial Aerodynamics (89), pp.649~664, 2001
19. Y. Odaka and H. Furuya, “Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter”, struct. Multidisc. Optim. (30), pp.437~446, 2005
20. Nebojsa Sebastijanovic and Tianwei DiCarlo, “An eigenvector orientation approach for detection and control of panel flutter”, Smart Structures and Materials, pp.214~223, 2005
21. E. H. Dowell, “Panel Flutter: A View of the Aeroelastic Stability of Plates and Shells”, AIAA J., Vol. 8, pp.385~399, 1970.
22. C. J. Houbolt, “AStudy of Several Aerothermoelastic Problems of Aircraft Structures in High Speed Flight”, Ph. D. thesis, No. 2760, 1958, Swiss Federal Institute of Technology, Zurish, Switzerland.
23. R. L. Bisplinghoff and H. Ashley, “Principle of Aeroelasticity”. New York, John Wiley and Sons Incorporated, 1962
24. R. W. Clough and J. Penzien, “Dynamic of Structure”, Mc Graw-Hill Incorporated,1975
25. A. C. Ugural, ”Stresses in Plates and Shells,”, Mc Graw-Hill Incorporated, 1981.
26. J. M. Whitney, ”Structural analysis of laminated anisotropic plates,”, Technomic Publishing Company, 1987.
27. 全湘偉, “以有限帶數法解析層板之撓曲、挫曲與振動”, 國立成功大學航空太空研究所論文, 1985
28. M. D. Olson, “Some Flutter Solution Using Finite Elements”, AIAA J., Vol. 8, pp.747~752, 1970.
29. G. Sander, X. Bon, and M.Gerandin, “Finite Element Analysis of Supersonic Panel Flutter”, Int. J. Numer. Engng., Vol.7, No.3, pp.379~394, 1973.