| 研究生: |
陳奐達 Chen, Huan-Da |
|---|---|
| 論文名稱: |
探討sir-2.3基因在Cry5B毒殺線蟲時所扮演的角色 Characterization of the sir-2.3 gene in response to Cry5B intoxication in Caenorhabditis elegans |
| 指導教授: |
陳昌熙
Chen, Chang-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 結晶毒素 |
| 外文關鍵詞: | Pore-Forming toxins(PFTs) |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結晶毒素[Crystal(Cry) toxins]是由革蘭氏陽性桿菌[Bacillus thuringiensis(Bt)]蘇利桿菌所產生的膜穿孔毒素[Pore-forming toxins (PFTs)]。膜穿孔毒素可在宿主細胞膜上形成孔洞進而使宿主細胞死亡,在許多人類病原菌當中,膜穿孔毒素是很重要的一種致病毒理因子。Cry毒素由於對昆蟲與線蟲類的特殊專一性,而被廣泛應用在生物防治上。在過去文獻已經指出Cry毒素的其中一員Cry5B,可以毒殺許多種類的線蟲,包含實驗室常用的模式生物線蟲(C. elegans) ,藉此我們進行Cry5B和線蟲之間的膜穿孔毒素—宿主交互作用之相關研究。
我們利用全基因體微晶片進行處理Cry5B後線蟲之基因轉錄體分析,發現其中sir-2.3基因的轉錄在處理Cry5B後有顯著的上調現象。SIR-2.3是需要菸鹼醯胺腺嘌呤二核苷酸(NAD)的去乙醯酵素並且是SIR2家族的一員,在過去已有研究指出SIR-2.3的哺乳類同源物SIRT4,可以抑制胰臟細胞胰島素的分泌。在本研究中我們發現SIR-2.3與類胰島素受器DAF-2在線蟲抵抗Cry5B的毒殺當中都扮演了很重要的角色,我們另外也去探討SIR-2.3與DAF-2兩者之間的關係。
Pore-Forming toxins(PFTs) are bacterial toxins that form holes at the plasma membrane of cells and play important roles in the pathogenesis of many important human pathogens. Crystal(Cry) toxin is one type of the PFTs produced by Bacillus thuringiensis(Bt), and is also the most widely used natural insecticides in agriculture for many decades. It has been reported that C. elegans and other nematodes can be intoxicated and killed by the three-domain Bt Cry toxins, including Cry5B in this study.
Characterizations of the mode of action of Cry5B in C. elegans may pave the way for understanding the PFT-host interactions in vivo.
From our previous microarray data, we found significant transcriptional upregulation of the sir-2.3 gene after Cry5B treatment in
C. elegans. SIR-2.3 is a member of the SIR2 family proteins with a NAD-dependent histone deacetylase activity. We have demonstrated that DAF-2 insulin-like signaling pathway was important for the intrinsic
cellular defense against PFTs. Interestingly, it has been reported that the mammalian SIR-2.3 homolog, SIRT4, can also inhibit the insulin secretion in pancreatic cells. Our current data suggested that sir-2.3 and daf-2 all function in Cry5B intoxication, and we also analyzed the
interaction between these two genes.
1. Huffman, D.L., et al., Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int J Med Microbiol, 2004. 293(7-8): p. 599-607.
2. Wu, C.J., et al., Clinical significance and distribution of putative virulence markers of 116 consecutive clinical Aeromonas isolates in southern Taiwan. J Infect, 2007. 54(2): p. 151-8.
3. Bechtel, D.B. and L.A. Bulla, Jr., Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol, 1976. 127(3): p. 1472-81.
4. Pigott, C.R. and D.J. Ellar, Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev, 2007. 71(2): p. 255-81.
5. Mylonakis, E. and A. Aballay, Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun, 2005. 73(7): p. 3833-41.
6. Marroquin, L.D., et al., Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 2000. 155(4): p. 1693-9.
7. Griffitts, J.S., et al., Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem, 2003. 278(46): p. 45594-602.
8. Huffman, D.L., et al., Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A, 2004. 101(30): p. 10995-1000.
9. Zhang, X. and Y. Zhang, Neural-immune communication in Caenorhabditis elegans. Cell Host Microbe, 2009. 5(5): p. 425-9.
10. Haigis, M.C. and L.P. Guarente, Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev, 2006. 20(21): p. 2913-21.
11. Haigis, M.C., et al., SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 2006. 126(5): p. 941-54.
12. Argmann, C. and J. Auwerx, Insulin secretion: SIRT4 gets in on the act. Cell, 2006. 126(5): p. 837-9.
13. Ahuja, N., et al., Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem, 2007. 282(46): p. 33583-92.
14. Chen, C.-S., WWP-1 Is a Novel Modulator of the DAF-2 Insulin-Like Signaling Network Involved in Pore-Forming Toxin Cellular Defenses in Caenorhabditis elegans. PLoS ONE, 2010. 5(3).
15. Kao, C.Y., F.C. Los, and R.V. Aroian, Nervous about immunity: neuronal signals control innate immune system. Nat Immunol, 2008. 9(12): p. 1329-30.
16. Tan, M.W., et al., Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2408-13.
17. Tissenbaum, H.A. and L. Guarente, Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. NATURE, 2001. 410(6825): p. 227-30.
18. Evans, E.A., T. Kawli, and M.W. Tan, Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog, 2008. 4(10): p. e1000175.
19. Garsin, D.A., et al., Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. SCIENCE, 2003. 300(5627): p. 1921.
20. Guarente, L. and C. Kenyon, Genetic pathways that regulate ageing in model organisms. NATURE, 2000. 408(6809): p. 255-62.