簡易檢索 / 詳目顯示

研究生: 蔡季培
Tsai, Chi-Pei
論文名稱: 無網格徑向點插值法在平板破裂分析之模擬
Simulation of fracture analysis in the plate by meshless radial point interpolation method
指導教授: 賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 徑向點插值法無網格破裂
外文關鍵詞: radial point interpolation method, meshless, crack
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展了無網格徑向點插值法(RPIM)應用在二維平板破裂之位移、應力分析,作為一種新興的數值方法,在處理不連續材料問題時,能避免傳統有限元素法難以解決的問題。徑向基函數為無網格法的一種,由於收斂速度快、形式簡單、形狀函數具備無窮階可微且連續等優點備受學者重視。為了驗證RPIM算法,模擬懸臂樑於受力後的位移、應力情況,與文獻結果一致,並討論不同形狀函數、節點數對此方法的影響。接著本文模擬具有凹槽的樑,透過不同形式的凹槽了解材料不連續對結構的影響,並討論不同深度的凹槽,使其在RPIM都有相當好的結果。最後藉由不連續結構的經驗及可視法模擬裂紋對結構的影響,可以發現其位移、應力在不同形式下的裂紋有不同的分佈方式,並討論不同深度的裂紋在RPIM方法求解都相當連續且平滑。

    This thesis presents a meshless radial point interpolation method (RPIM) model for simulation of two dimensional displacement and stress of fracture analysis in the plate. As a kind of newly developed numerical methods, meshfree method can overcome discontinuous material problems which trouble the conventional finite element method. As a kind of meshfree method, radial basis function received many researchers’ interest due to its characteristics of rapid convergence, simple expression, shape function are infinitely differentiable and continuous,etc. In order to verify the model, the displacement and stress condition of cantilever beam in force, results is well-agreement of previously literature. And discuss the impact of different shape functions, different nodes by this method. Then this paper simulates a beam with notch, understand the discontinuous material and different depths impact on the linear elastic structure , making it through different forms of notch has very good results in RPIM. Finally, the effect of the crack on the structure by notch and visibility criterion was present. Different distribution of displacement and stress can be discussed in different forms of cracks, and the different depth of crack also had well-agreement by RPIM.

    中文摘要 I Extend Abstract II 致謝 VI 目錄 VII 表目錄 X 圖目錄 X 符號目錄 XV 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 章節瀏覽 3 第2章 文獻回顧與基本方程式 5 2.1 無網格法之文獻回顧 5 2.2 無網格法之優缺點 7 2.3 無網格法之積分處理 8 2.4 二維固體力學方程式 9 2.4.1 應變位移方程式 9 2.4.2 本構方程式 9 2.4.3 平衡方程式 10 第3章 模型的建構與模擬流程 12 3.1 無網格弱型式法的基本原理 12 3.2 無網格徑向點差值法基本方程 13 3.2.1 加權殘值法 13 3.2.2 伽遼金弱形式 15 3.3 支持域與影響域 16 3.4 形狀函數(shape function) 17 3.4.1 多項式的點插值(PIM)形狀函數 18 3.4.2 徑向點插值形狀函數 20 3.4.3 RPIM形狀函數的特性 23 3.4.4 常用徑向基底函數(RBF) 24 3.5 控制方程式之離散 26 3.5.1 場函數的近似 27 3.5.2 RPIM離散 28 3.5.3 RPIM數值化 30 3.6 本質邊界條件處理 32 3.7 無網格在裂紋擴展應用 35 3.7.1 可視法(visibility criterion) 35 3.7.2 衍射法(diffraction criterion) 36 3.7.3 透明性 36 3.8 程式流程 37 第4章 數值模擬與結果討論 49 4.1 基本算例驗證 49 4.1.1 懸臂樑(cantilever beam) 49 4.2 凹槽樑 51 4.2.1 單邊凹槽 51 4.2.2 雙邊凹槽 53 4.3 裂紋分析 54 4.3.1 單裂紋分析 55 4.3.2 雙裂紋分析 56 4.3.3 封閉裂紋分析 57 第5章 總結與展望 96 5.1 總結 96 5.2 展望 97 參考文獻 98

    [1] Asprone, D., Auricchio, F., & Reali, A. (2014). Modified Finite Particle Method: applications to elasticity and plasticity problems. International Journal of Computational Methods, 11(01).
    [2] Alan T. Zehnder.(2012). Fracture Mechanics. ,Springer Netherlands.
    [3] Belytschko, T., Lu, Y. Y., & Gu, L. (1995). Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 51(2), 295-315.
    [4] Cao,Y.,Yao,L.Q., & Yi,S.C.(2014). A weighted nodal-radial point interpolation meshless method for 2D solid problems.Engineering Analysis with Boundary Elements. 88–100
    [5] Chen, Y., Lee, J. D., & Eskandarian, A. (2006). Meshless methods in solid mechanics. Heidelberg: Springer.
    [6] Duflot, M., & Nguyen-Dang, H. (2004). Fatigue crack growth analysis by an enriched meshless method. Journal of Computational and Applied Mathematics, 168(1), 155-164.
    [7] Engle Jr, R. M. (1970). CRACKS, a FORTRAN IV digital computer program for crack propagation analysis (No. AFFDL-TR-70-107). AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OH.
    [8] Fleming, M., Chu, Y. A., Moran, B., Belytschko, T., Lu, Y. Y., & Gu, L. (1997). Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40(8), 1483-1504.
    [9] Graça, A., Cardoso, R. P., & Yoon, J. W. (2013). Subspace analysis to alleviate the volumetric locking in the 3D solid-shell EFG method. Journal of Computational and Applied Mathematics, 246, 185-194.
    [10] Hong, W. T. (2009). A meshless method with enriched basis functions for singularity problems ,Doctoral dissertation, THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE.
    [11] Kolodziej, J. A., Jankowska, M. A., & Mierzwiczak, M. (2013). Meshless methods for the inverse problem related to the determination of elastoplastic properties from the torsional experiment. International Journal of Solids and Structures, 50(25), 4217-4225.
    [12] Li, S. C., Li, S. C., & Cheng, Y. M. (2005). Enriched meshless manifold method for two-dimensional crack modeling. Theoretical and applied fracture mechanics,44(3), 234-248.
    [13] Liu, G. R., & Gu, Y. T. (2005). An introduction to meshfree methods and their programming. Springer.
    [14] Monaghan, J.J.,(1992). Smoothed particle hydrodynamics. Annual Review of Astronomical and Astrophysics, 30, 543-574.
    [15] Moosavi, M. R., Delfanian, F., & Khelil, A. (2012). Orthogonal meshless finite volume method applied to crack problems. Thin-Walled Structures, 52, 61-65.
    [16] Moosavi, M. R., Delfanian, F., & Khelil, A. (2012). Performance of orthogonal meshless finite volume method applied to elastodynamic crack problems. Thin-Walled Structures, 53, 156-160.
    [17] Pant, M., Singh, I. V., & Mishra, B. K. (2010). Numerical simulation of thermo-elastic fracture problems using element free Galerkin method. International Journal of Mechanical Sciences, 52(12), 1745-1755.
    [18] Rao, B. N., & Rahman,S. (2001) ,A coupled meshless-finite element method for fracture analysis of cracks.,International Journal of Pressure Vessels and Piping. 78(9),647-657.
    [19] Rice, J. (1988). Elastic fracture mechanics concepts for interfacial cracks. Journal of applied mechanics, 55(1), 98-103.
    [20] Suliman, R., Oxtoby, O. F., Malan, A. G., & Kok, S. (2013). An enhanced finite volume method to model 2D linear elastic structures. Applied Mathematical Modelling.
    [21] Su, R. K. L., & Feng, W. J. (2005). Accurate determination of mode I and II leading coefficients of the Williams expansion by finite element analysis. Finite elements in Analysis and Design, 41(11), 1175-1186.
    [22] Sladek, J., Sladek, V., Krahulec, S., Zhang, C., & Wünsche, M. (2013). Crack analysis in decagonal quasicrystals by the MLPG. International Journal of Fracture,181(1), 115-126.
    [23] Shi, J., Ma, W., & Li, N. (2013). Extended meshless method based on partition of unity for solving multiple crack problems. Meccanica, 48(9), 2263-2270.
    [24] Sagaresan, N. (2013). A SIMPLIFIED MESHLESS METHODS FOR BRITTLE FRACTURE OF CONCRETE. International Journal of Computational Methods,10(03).
    [25] Yuqiu, L., & Yiqiang, Z. (1985). Technical note: Calculation of stress intensity factors in plane problems by the sub-region mixed finite element method. Advances in Engineering Software (1978), 7(1), 32-35.
    [26] Zhuang, X., Cai, Y., & Augarde, C. (2013). A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics.
    [27] Zhuang, X., Augarde, C., & Bordas, S. (2011). Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling. International Journal for Numerical Methods in Engineering, 86(2), 249-268.
    [28] Zehnder, A. T. (2012). Linear Elastic Stress Analysis of 2D Cracks. In Fracture Mechanics (pp. 7-32). Springer Netherlands.
    [29] Zhu, T. (1998). Meshless methods in computational mechanics.
    [30] 沈國瑞(2002),「無元素分析之積分權值調整法」,國立中央大學土木工程研究所博士論文。
    [31] 吳柏壽(2001),「元素釋放法在非均質材料之應用」,國立中央大學土木工程研究所碩士論文。
    [32] 張鈺翎(2013),「光滑粒子流體動力學在微流道中紅血球變形之模擬與應用」,國立成功大學機械工程研究所碩士論文。
    [33] 張正群(2012),「懸臂樑之平面應力分析」,國立成功大學土木工程研究所碩士論文。
    [34] 詹奇峰(2003),「應力集中效應對表面疲勞裂縫之影響」,國立成功大學造船暨船舶機械工程研究所碩士論文。
    [35] 羅漢中(2013), 「徑向基函數無網格配點法及其在岩石力學中的應用研究」,上海交通大學船舶海洋與建築工程學院博士論文。
    [36] 秦伶俐(2005),「無網格法在結構計算上的改進」,中國農業大學車輛工程所學位論文。

    下載圖示 校內:2017-07-11公開
    校外:2017-07-11公開
    QR CODE