簡易檢索 / 詳目顯示

研究生: 林東億
Lin, Tung-I
論文名稱: 以原子力顯微術評估細胞連接之力學性質
Study on Mechanical Property of Cell Junction by Atomic Force Microscopy
指導教授: 張憲彰
Chang, Hsien-Chang
林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 54
中文關鍵詞: 基材效應鉀氯離子共同通道上皮間葉細胞轉換細胞連接原子力顯微術
外文關鍵詞: Potassium Chloride Cotransporter, Epithelial-Mesenchymal Transition, Substrate Effect, Atomic Force Microscopy, Cell Junction
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉀氯離子共同通道同質體3 (potassium chloride cotransporter isoform 3, KCC3)是細胞內滲透壓平衡的決定性因子,同時也在腫瘤生物學裡扮演重要的角色。目前它被發現與上皮間葉細胞轉換(epithelial-mesenchymal transition, EMT)的調節相關,亦顯示出KCC3過度表現的SiHa細胞(KCC- overexpressed SiHa Cell)擁有EMT的許多特徵,如拉長了細胞的形狀,降低了上皮細胞的標記(E-cadherin and-catenin),增強了間葉細胞的標記(vimentin)等。E-cadherin與-catenin為形成細胞與細胞之間連接(cell-cell junction)的其中一類:黏著連接(adherent junction)。而黏著連接形成後提供細胞骨架(cytoskeleton)結合點來增加細胞的韌性,故原生型(wild type SiHa Cell)與KCC3細胞相比,在細胞連接的區域應該會有較大的韌性。
    因此我們選擇原子力顯微術(atomic force microscopy, AFM)可以細胞正常生理環境下量測的優點,配合微奈米薄膜理論(thin film theory)來計算不含基材效應的機械特性的能力,以進行細胞連接區域的研究。首先我們在韌性較金屬低的高分子材料,聚二甲基矽氧烷(PDMS)上驗證薄膜理論用確實可以運用在於低韌性的材料,得到修正了基材效應後的楊氏模數。下一步我們在更低韌性的PAA Gel (polyacrylamide gel)上培養細胞,對細胞連接區域進行量測。結果顯示,原生型細胞在細胞連接的區域(3.1 m)比KCC3細胞(1.4 m)擁有較大的厚度,證實原生型細胞擁有較完整的細胞連接。此外原生型細胞在細胞連接的區域(1.5 kPa)有較其它區域更強的韌性(0.6~1.2 kPa),而EMT細胞(KCC3)則無此現象(1.0~1.2 kPa)。證明了原生型細胞在細胞連接形成後會強化了附近的細胞骨架,而形成穩固的細胞連接。所以以上兩個證據顯示EMT細胞(KCC3)在細胞相鄰區域沒有形成顯著的細胞連接。

    The potassium chloride cotransporter isoform 3(KCC3) is a major factor of osmotic homeostasis and plays an emerging role in tumor biology. It is involved in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular event of malignancy. Furthermore, the characteristics of EMT appear in KCC3-overexpressed cervical cancer cells, including the elongated cell shape, increased scattering, down-regulated epithelial markers (E-cadherin and-catenin), and up-regulated mesenchymal marker (vimention). And the complex of E-cadherin and -catenin is adherent junction, one of cell-cell junctions, which will bind with cytoskeletons and enhance the stiffness of cell. Therefore, wild type SiHa cells are expected to be stiffer than KCC3 SiHa cells in cell-cell junction region.
    To prove such a hypothesis, we choose the atomic force microscopy, AFM, as study tools with the advantage of observing the cells in their physiological environment, and use the thin film theory, which can solve the problem of substrate effect, to calculate the stiffness of cell junction region. First, we prove the model of thin film theory can be use in the softer materials, PDMS. Then we culture the SiHa cell on the softer materials, PAA Gel, and measure the stiffness of cell junction region. As a result, we found that the thickness of wild type SiHa cells is 3.1 m and thicker than the thickness of KCC3 SiHa cells which is 1.4 m in adjacent region. It suggests that wild type SiHa cells have the complete cell junction, but EMT cells don’t. Moreover, the stiffness of wild type SiHa cells is 1.5 kPa in the adjacent region and stiffer than the other regions which is 0.6-1.3 kPa. However, the stiffness of KCC3 SiHa cells is about 1.0 kPa and similar in all regions. It proves that wild type cells will enhance the cytoskeleton of cell junction region after cell junction forms. According to the two powerful evidences from AFM and thin film theory, we prove that wild type cells form more obvious and stronger cell-cell junction in their adjacent region than EMT cells (KCC3-overexpression SiHa cells).

    摘 要...............................................I Abstract............................................II 誌 謝.............................................III 目 錄..............................................IV 表目錄..............................................VI 圖目錄.............................................VII 第一章 緒 論.........................................1 1-1細胞的機械訊息傳遞................................1 1-2細胞機械性質的觀測方法............................4 1-3原子力顯微術......................................5 1-3-1 表面量測-Height, DFL, MAG圖....................7 1-3-2 機械性質分析-力與距離曲線......................9 1-3-3 壓頭幾何對表面量測及力學分析的影響............13 1-3-4 薄層理論......................................15 1-4研究動機.........................................19 1-5研究目的與架構...................................20 第二章 實驗設備與方法...............................21 2-1基材製備.........................................21 2-1-1 Polydimethylsiloxane (PDMS)的製備.............21 2-1-2 Polyacrylamide gel (PAA gel)..................22 2-2原子力顯微術的原理與技術.........................27 2-2-1 表面形態掃描及壓痕試驗參數:..................27 2-2-2壓痕試驗之量測分析.............................29 2-3 細胞品系及培養條件..............................31 第三章 結果與討論...................................33 3-1 PDMS與PAA的形貌及力曲線的量測...................34 3-1-1 10:1 PDMS及20:1 PDMS..........................34 3-1-2 20:1 PDMS在10:1 PDMS上........................35 3-1-3 PAA Gel.......................................38 3-2 SiHa細胞的形貌..................................40 3-3 SiHa細胞在培養皿上的機械性質分析討論............43 3-4 SiHa細胞在PAA Gel上的力曲線分析.................45 第四章 結論及未來展望...............................47 4-1 薄層理論之延伸..................................47 4-2 薄層理論在細胞力學上之貢獻......................47 4-3 細胞連接會增加力學的強度........................48 4-4 KCC3會提升整體細胞之力學強度....................48 4-5 未來展望........................................49 參考文獻............................................50 自 述...............................................54

    [1] Bourdoulous, S., Orend, G., MacKenna, D.A., Pasqualini, R., & Ruoslahti, E., Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J Cell Biol 143 (1), 267-276 (1998).
    [2] Klotz, S.A., Fungal adherence to the vascular compartment: a critical step in the pathogenesis of disseminated candidiasis. Clin Infect Dis 14 (1), 340-347 (1992).
    [3] Folkman, J. & Moscona, A., Role of cell shape in growth control. Nature 273 (5661), 345-349 (1978).
    [4] Gomperts, B.D., Tatham, P.E.R., & Kramer, I.M., Signal transduction. (Academic Press, San Diego, Calif., 2002).
    [5] Bongrand, S., Specific and nonspecific interactions in cell biology. Journal of Dispersion Science and Technology 19 (6&7), 963-978 (1998).
    [6] Springer, T.A. & Wang, J.H., The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem 68, 29-63 (2004).
    [7] Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69 (1), 11-25 (1992).
    [8] Susan E. La Flamme & Kowalczyk, A.P., Cell Junctions. (Wiley-VCH, Weinheim, 2008).
    [9] Alberts, B., Molecular biology of the cell, 3rd ed. (Garland Pub., New York, 1994).
    [10] Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., & Aebi, U., Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8 (7), 562-573 (2007).
    [11] Usami, S., Chen, H.H., Zhao, Y., Chien, S., & Skalak, R., Design and construction of a linear shear stress flow chamber. Ann Biomed Eng 21 (1), 77-83 (1993).
    [12] Thoumine, O., Ott, A., & Louvard, D., Critical centrifugal forces induce adhesion rupture or structural reorganization in cultured cells. Cell Motil Cytoskeleton 33 (4), 276-287 (1996).
    [13] Discher, D.E., Mohandas, N., & Evans, E.A., Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266 (5187), 1032-1035 (1994).
    [14] Galbraith, C.G. & Sheetz, M.P., A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci U S A 94 (17), 9114-9118 (1997).
    [15] Florin, E.L., Pralle, A., Horber, J.K., & Stelzer, E.H., Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol 119 (2), 202-211 (1997).
    [16] Bausch, A.R., Moller, W., & Sackmann, E., Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76 (1 Pt 1), 573-579 (1999).
    [17] Suresh, S., Biomechanics and biophysics of cancer cells. Acta Biomater 3 (4), 413-438 (2007).
    [18] Binnig, G., Quate, C.F., & Gerber, C., Atomic force microscope. Phys Rev Lett 56 (9), 930-933 (1986).
    [19] Kasas, S. et al., Biological applications of the AFM: From single molecules to organs. International Journal of Imaging Systems and Technology 8 (2), 151-161 (1998).
    [20] Simon, A. & Durrieu, M.C., Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 37 (1), 1-13 (2006).
    [21] Sneddon, I., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile☆. International Journal of Engineering Science 3 (1), 47-57 (1965).
    [22] Alexander, S. et al., An atomic-resolution atomic-force microscope implemented using an optical lever. Journal of Applied Physics 65, 164-167 (1989).
    [23] Fischer-Cripps, A.C., Introduction to contact mechanics, 2nd ed. (Springer, New York, 2007).
    [24] Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., & Zhdanov, R.I., Atomic force microscopy probing of cell elasticity. Micron 38 (8), 824-833 (2007).
    [25] Wei, P.J. & Lin, J.F., A new method developed to evaluate both the hardness and elastic modulus of a coating–substrate system. Surface and Coatings Technology 200 (7), 2489-2496 (2005).
    [26] Radmacher, M., Fritz, M., Kacher, C.M., Cleveland, J.P., & Hansma, P.K., Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70 (1), 556-567 (1996).
    [27] Lekka, M. & Laidler, P., Applicability of AFM in cancer detection. Nat Nanotechnol 4 (2), 72; author reply 72-73 (2009).
    [28] Costa, K.D., Single-cell elastography: probing for disease with the atomic force microscope. Dis Markers 19 (2-3), 139-154 (2003).
    [29] Hsu, Y.M. et al., KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 67 (22), 11064-11073 (2007).
    [30] Lee, G.Y. & Lim, C.T., Biomechanics approaches to studying human diseases. Trends Biotechnol 25 (3), 111-118 (2007).
    [31] Kandow, C.E., Georges, P.C., Janmey, P.A., & Beningo, K.A., Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol 83, 29-46 (2007).
    [32] Brown, X.Q., Ookawa, K., & Wong, J.Y., Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26 (16), 3123-3129 (2005).
    [33] Oberleithner, H. et al., Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci U S A 106 (8), 2829-2834 (2009).
    [34] Suresh, S., Nanomedicine: elastic clues in cancer detection. Nat Nanotechnol 2 (12), 748-749 (2007).

    下載圖示 校內:2010-08-04公開
    校外:2010-08-04公開
    QR CODE