簡易檢索 / 詳目顯示

研究生: 郭瑋婷
Kuo, Wei-Ting
論文名稱: 以AHP探討生成式人工智慧為基之企業虛擬團隊協作之關鍵成功因素
An AHP-based Study on the Key Success Factors of Virtual Team Collaboration Using Generative Artificial Intelligence
指導教授: 陳宗義
Chen, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 112
中文關鍵詞: 生成式人工智慧虛擬團隊協作關鍵成功因素層級分析法企業導入
外文關鍵詞: Generative Artificial Intelligence, virtual team collaboration, key success factors, Analytic Hierarchy Process, enterprise adoption
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生成式人工智慧(Generative AI, GAI)技術於近年快速發展,為企業虛擬團隊協作帶來嶄新可能。然而,實務上企業在導入GAI時,往往面臨技術落差、制度配套與組織接受度等多重挑戰,相關關鍵成功因素之系統性探討亦仍付之闕如。本研究旨在建構企業導入GAI於虛擬團隊協作之關鍵成功因素評估架構,並進一步探討各因素之相對重要性,以提供企業推動GAI策略之實務參考。
    本研究首先透過文獻回顧與專家訪談,彙整初步因素構面,並引入GAI輔助工具,進行因素語意擴展與結構補強。接續由專家針對整合後的因素進行篩選與確認,形成完整評估層級架構。研究採用層級分析法(Analytic Hierarchy Process)進行問卷設計與實證分析,共回收十五份之業界專家的有效問卷,完成因素權重計算與排序。
    研究結果顯示,「模型可信度」、「模型資料品質」與「需求導向」為前三大關鍵成功因素,說明專家特別關注模型的正確性與穩定性、訓練資料的品質與完整性,以及應用情境的契合程度。其次為「主管支持」、「整合能力」與「應用場景支援能力」。本研究依據因素權重進行分群,將19項關鍵因素分為核心、支持與配套三層級,並結合專家訪談觀點,提出導入規劃、現況診斷、共識建立等三大應用方向,並發展「GAI應用成熟度評估表」,提供企業自評導入階段、辨識關鍵差距與規劃策略節奏的具體工具。整體而言,本研究不僅補足GAI於企業虛擬團隊協作場域中關鍵成功因素之理論探討,亦提供企業在實務推動上的具體操作依據,期能作為未來組織導入GAI之規劃參考。

    Generative Artificial Intelligence (GAI) has advanced rapidly in recent years, offering new opportunities for virtual team collaboration in enterprises. However, organizations face challenges such as technological gaps, insufficient institutional support, and low organizational acceptance. This study aims to develop an evaluation framework for key success factors (KSFs) in GAI adoption for virtual team collaboration and to assess their relative importance, providing practical guidance for enterprises.
    Preliminary KSF dimensions were identified through literature review and expert interviews, then refined using GAI-assisted tools for semantic expansion and structural enhancement. Experts reviewed and validated the integrated list to establish a complete hierarchical framework. The Analytic Hierarchy Process was applied to design questionnaires, collect responses from fifteen industry experts, and calculate factor weights and rankings.
    Results show that model reliability, data quality, and demand orientation are the top three KSFs, followed by managerial support, integration capability, and application scenario adaptability. Based on weights, the 19 factors were grouped into core, supportive, and complementary tiers. Three application directions—implementation planning, current state assessment, and consensus building—were proposed, along with a GAI Application Maturity Assessment Table to help organizations evaluate adoption stages, identify gaps, and plan strategies. This study provides a theoretical framework and practical tools to support effective GAI implementation in virtual team collaboration.

    中文摘要 0 Extended Abstract 1 誌謝 5 目錄 6 表目錄 9 圖目錄 11 第一章 緒論 12 1.1 研究背景 12 1.2 研究動機 13 1.3 研究目的 14 1.4 研究流程 15 1.5 可能遭遇的困難 17 1.6 預期的貢獻 17 第二章 文獻探討 18 2.1生成式人工智慧 18 2.2 人機協作 22 2.3 GAI增強創意問題解決與專家觀點擴展 25 2.4虛擬團隊 26 2.5 層級分析法 30 第三章 研究方法 34 3.1 Human-AI Collaboration virtual team模型構建 34 3.2 研究訪談 36 3.2.1 訪談者基本資料 37 3.2.2 專家訪談問卷設計 39 3.3 使用GAI輔助擴展因素與專家篩選 41 3.3.1 專家訪談初步因素歸納 42 3.3.2 使用GAI輔助之因素擴展與專家篩選 42 第四章 關鍵成功因素評估 44 4.1 因素來源彙整與層級架構建立 44 4.1.1專家訪談內容整理 44 4.1.2 專家訪談內容分析 47 4.1.3 使用GAI輔助之因素擴展與專家篩選結果 51 4.1.4 專家與GAI觀點之整合與比較分析 56 4.1.5 AHP層級架構設計 57 4.2 問卷調查 66 4.3問卷合併計算結果 69 4.3.1 成對比較矩陣合併與一致性檢驗 69 4.3.2 第二層級相關構面比較矩陣 69 4.3.3 第三層級相關構面與因素比較矩陣 70 4.3.4 第四層級相關構面與因素比較矩陣 75 4.4專家職位層級對構面重視程度之差異分析 76 第五章 結論與建議 78 5.1 研究發現與討論 78 5.2 實務應用建議 81 5.2.1 GAI應用成熟度評估與推進 82 5.2.2 方案選擇與推動策略 85 5.3 研究貢獻 86 5.4 研究限制與未來研究方向 87 參考文獻 90 附錄一 問卷 97 附錄二 AHP 權重計算與一致性檢查(Excel 實作說明) 108

    榮泰生(2023)。Expert Choice在分析層級程序法(AHP)之應用。臺北市:五南。
    鄧振源、曾國雄(1989)。層級分析法(AHP)的內涵特性與應用。中國統計學報,27(7),13767–13786。
    Cheers雜誌 (2025)。AI也有「人設」?9大語言模型個性大揭密:ChatGPT有同理心、Claude最溫柔、DeepSeek超壓抑。Retrieved from https://www.cheers.com.tw/article/article.action?id=5104525 [檢索日期: 2025-06-04]
    UiPath. (2024). Global Knowledge Worker Survey 2024: AI at Work – The Power and the Paradox. Retrieved from https://go.shr.lc/4koKryK [檢索日期: 2024-11-24]
    Google Cloud & Artificial Intelligence Foundation. (2024).台灣企業AI準備度調查報告. Retrieved from https://services.google.com/fh/files/misc/20240822-googlecloud-tw-ai-readiness-report.pdf [檢索日期: 2024-11-03]
    Dell'Acqua, F., McFowland, E. III, Mollick, E., Lifshitz-Assaf, H., Kellogg, K. C., Rajendran, S., Krayer, L., Candelon, F., & Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productivity and quality (Working Paper No. 24-013). Harvard Business School. https://www.hbs.edu/faculty/Pages/item.aspx?num=64700
    Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., ... & Horvitz, E. (2019). Guidelines for human-AI interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3290605.3300233
    Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33, 63–80. https://doi.org/10.1007/s12525-023-00680-1
    Barcaui, A., & Monat, A. (2023). Who is better in project planning? Generative artificial intelligence or project managers?. Project Leadership and Society, 4, 100101. https://doi.org/10.1016/j.plas.2023.100101
    Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., & Oladunni, T. (2024). Advancements in generative AI: A comprehensive review of GANs, GPT, autoencoders, diffusion model, and transformers. IEEe Access, 12, 69812-69837. https://doi.org/10.1109/ACCESS.2024.3397775
    Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. Journal of Product Innovation Management, 40(2), 139–153. https://doi.org/10.1111/jpim.12656
    Brynjolfsson, E., Li, D., & Raymond, L. R. (2025). Generative AI at work. The Quarterly Journal of Economics, 140(2), 889-942. https://doi.org/10.1093/qje/qjae044
    Chuah, S. H. W., & Yu, J. (2021). The future of service: The power of emotion in human-robot interaction. Journal of Retailing and Consumer Services, 61, 102551. https://doi.org/10.1016/j.jretconser.2021.102551
    Darban, M. (2023). Navigating virtual teams in generative AI-led learning: The moderation of team perceived virtuality. Education and Information Technologies, 29(17), 23225-23248. https://doi.org/10.1007/s10639-024-12681-4
    Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
    Dulebohn, J. H., & Hoch, J. E. (2017). Virtual teams in organizations. Human Resource Management Review, 27(4), 569–574. https://doi.org/10.1016/j.hrmr.2016.12.004
    Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Wade, M. R., Baabdullah, A. M., Zeng, J., Ismagilova, E., Davison, R. M., Yoon, T. E., Yan, Z., Dennehy, D., Tamilmani, K., Singh, J. B., Sharma, S. K., Wang, X., Tan, T., ... Wright, R. (2023). Opinion Paper: So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Ebrahim, N. A., Ahmed, S., & Taha, Z. (2009). Virtual teams: A literature review. Australian Journal of Basic and Applied Sciences, 3(3), 2653–2669. https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Emrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research, 55(22), 6653–6675. https://doi.org/10.1080/00207543.2017.1334976
    Feuerriegel, S., Hartmann, J., Janiesch, C., Zschech, P., & Brenner, W. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111–126. https://doi.org/10.1007/s12599-023-00834-7
    Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165–169. https://doi.org/10.1016/S0377-2217(97)00244-0
    Fragiadakis, G., Diou, C., Kousiouris, G., & Nikolaidou, M. (2024). Evaluating human-AI collaboration: A review and methodological framework. arXiv preprint arXiv:2407.19098. https://doi.org/10.48550/arXiv.2407.19098
    Gibbs, J. L., Sivunen, A., & Boyraz, M. (2017). Investigating the impacts of team type and design on virtual team processes. Human Resource Management Review, 27(4), 590-603. https://doi.org/10.1016/j.hrmr.2016.12.006
    Gilson, L. L., Maynard, M. T., Young, N. C. J., Vartiainen, M., & Hakonen, M. (2015). Virtual teams research: 10 years, 10 themes, and 10 opportunities. Journal of Management, 41(5), 1313–1337. https://doi.org/10.1177/0149206314559946
    Gupta, P., Ding, B., Guan, C., & Ding, D. (2024). Generative AI: A systematic review using topic modelling techniques. Data and Information Management, 8(2), 100066. https://doi.org/10.1016/j.dim.2024.100066
    Gupta, R., Nair, K., Mishra, M., Ibrahim, B., & Bhardwaj, S. (2024). Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda. International Journal of Information Management Data Insights, 4(1), 100232. https://doi.org/10.1016/j.jjimei.2024.100232
    Gyory, J. T., Kotovsky, K., & Cagan, J. (2022). Is it human or is it artificial intelligence? Discerning the impact and effectiveness of process managers based on the manager's identity. Proceedings of the Design Society, 2, 1579–1588. doi:10.1017/pds.2022.160
    Hertel, G., Geister, S., & Konradt, U. (2005). Managing virtual teams: A review of current empirical research. Human Resource Management Review, 15(1), 69–95. https://doi.org/10.1016/j.hrmr.2005.01.002
    Hoch, J. E., & Dulebohn, J. H. (2017). Team personality composition, emergent leadership, and shared leadership in virtual teams: A theoretical framework. Human Resource Management Review, 27(4), 678–693. https://doi.org/10.1016/j.hrmr.2016.12.012
    Hosanagar, K., & Ahn, D. (2024). Designing human and generative AI collaboration. arXiv preprint arXiv:2412.14199. https://doi.org/10.48550/arXiv.2412.14199
    Huang, M. H., & Rust, R. T. (2020). Engaged to a robot? The role of AI in service. Journal of Service Research, 24(1), 30–41. https://doi.org/10.1177/1094670520902266
    Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
    Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., Wach, K., & Ziemba, E. (2023). Generative artificial intelligence as a new context for management theories: Analysis of ChatGPT. Central European Management Journal, 31(1), 3–13. https://doi.org/10.1108/CEMJ-02-2023-0091
    Lee, A. H., Chen, W. C., & Chang, C. J. (2008). A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert systems with applications, 34(1), 96-107. https://doi.org/10.1016/j.eswa.2006.08.022
    Liao, C. (2017). Leadership in virtual teams: A multilevel perspective. Human Resource Management Review, 27(4), 648-659. https://doi.org/10.1016/j.hrmr.2016.12.010
    Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
    Lipnack, J., & Stamps, J. (1997). Virtual Teams: Reaching Across Space, Time, and Organizations with Technology. Wiley: New York.
    Lipnack, J., & Stamps, J. (1999). Virtual teams: The new way to work. Strategy & Leadership, 27(1), 14–19. https://doi.org/10.1108/eb054625
    Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629–650. https://doi.org/10.1093/jcr/ucz013
    Madzík, P., & Falát, L. (2022). State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLOS ONE, 17(5), e0268777. https://doi.org/10.1371/journal.pone.0268777
    Maslej, N., Fattorini, L., Perrault, R., Gil, Y., Parli, V., Kariuki, N., Capstick, E., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y., Wald, R., Walsh, T., Hamrah, A., Santarlasci, L., ... Oak, S. (2025). The AI Index 2025 annual report. Stanford, CA: AI Index Steering Committee, Institute for Human-Centered AI, Stanford University. https://hai.stanford.edu/ai-index/2025-ai-index-report
    Marlow, S. L., Lacerenza, C. N., & Salas, E. (2017). Communication in virtual teams: A conceptual framework and research agenda. Human Resource Management Review, 27(4), 575–589. http://doi.org/10.1016/j.hrmr.2016.12.005
    Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large language models: A survey. arXiv preprint arXiv:2402.06196. https://doi.org/10.48550/arXiv.2402.06196
    Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA: Sage.
    Modica, J. E., Rabechini, R., Jr., & Braun, E. M. (2010). Prioritization of a portfolio of projects. In Proceedings of the 2010 8th International Pipeline Conference (Vol. 3, pp. 41–48). American Society of Mechanical Engineers. https://doi.org/10.1115/IPC2010-31509
    Morrison-Smith, S., & Ruiz, J. (2020). Challenges and barriers in virtual teams: A literature review. SN Applied Sciences, 2(6), 1096. https://doi.org/10.1007/s42452-020-2801-5
    Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187–192. https://doi.org/10.1126/science.adh2586
    Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42(1), 15-29. https://doi.org/10.1016/j.im.2003.11.002
    Ortiz de Guinea, A., Webster, J., & Staples, D. S. (2012). A meta-analysis of the consequences of virtualness on team functioning. Information & Management, 49(6), 301–308. https://doi.org/10.1016/j.im.2012.08.003
    Peng, C., van Doorn, J., Eggers, F., & Wieringa, J. E. (2022). The effect of required warmth on consumer acceptance of artificial intelligence in service: The moderating role of AI-human collaboration. International Journal of Information Management, 66, 102533. https://doi.org/10.1016/j.ijinfomgt.2022.102533
    Powell, A., Piccoli, G., & Ives, B. (2004). Virtual teams: A review of current literature and directions for future research. SIGMIS Database, 35(1), 6–36. https://doi.org/10.1145/968464.968467
    Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption challenges of AI in the construction industry: A Prisma review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. https://doi.org/10.3390/joitmc8010045
    Roehling, M. (2017). The important but neglected legal context of virtual teams: Research implications and opportunities. Human Resource Management Review, 27(4), 621–634. https://doi.org/10.1016/j.hrmr.2016.12.008
    Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Hoboken, NJ: Pearson.
    Saaty, T. L. (1980). The analytic hierarchy process. New York, NY: McGraw-Hill
    Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
    Saaty, T. L. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process. Pittsburgh, PA: RWS Publications.
    Saaty, T. L., & Vargas, L. G. (2012). How to make a decision. In Models, Methods, Concepts & Applications of the Analytic Hierarchy Process (pp. 1–21). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-3597-6_1
    Schaubroeck, J. M., & Yu, A. (2017). When does virtuality help or hinder teams? Core team characteristics as contingency factors. Human Resource Management Review, 27(4), 635–647. https://doi.org/10.1016/j.hrmr.2016.12.009
    Schmidtke, J. M., & Cummings, A. (2017). The effects of virtualness on teamwork behavioral components: The role of shared mental models. Human Resource Management Review, 27(4), 660–677. http://dx.doi.org/10.1016/j.hrmr.2016.12.011
    Sengar, S. S., Hasan, A. B., Kumar, S., & Carroll, F. (2025). Generative artificial intelligence: a systematic review and applications. Multimedia Tools and Applications, 84(21), 23661-23700. https://doi.org/10.1007/s11042-024-20016-1
    Sharma, A. K., Zheng, T. M., Chiu, Y. L., Chang, K. S., Li, I. T., Ruan, J. J., Liao, P. C., Chen, C., Ting, J. M., & Su, Y. H. (2025). Harnessing machine learning to probe dielectrics in next generation telecommunication and automotive radar applications. Journal of Materials Chemistry C, 13(17), 8450-8460.
    Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1), 229–241. https://doi.org/10.1016/S0165-0114(83)80082-7
    Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
    Vössing, M., Kühl, N., Lind, M., & Satzger, G. (2022). Designing transparency for effective human-AI collaboration. Information Systems Frontiers, 24, 877–895. https://doi.org/10.1007/s10796-022-10284-3
    Zhang, A. (2022). The application of virtual teams in the improvement of enterprise management capability from the perspective of knowledge transfer. PLOS ONE, 17(3), e0264367. https://doi.org/10.1371/journal.pone.0264367
    Zhang, G., Chong, L., Kotovsky, K., & Cagan, J. (2022). Trust in an AI versus a Human teammate: The effects of teammate identity and performance on human-AI cooperation. Computers in Human Behavior, 139, 107536. https://doi.org/10.1016/j.chb.2022.107536
    Zurita, N. F. S., Gyory, J. T., Balon, C., Martin, J., Kotovsky, K., Cagan, J., & McComb, C. (2022). Data on the human versus artificial intelligence process management experiment. Data in Brief, 41, 107969. https://doi.org/10.1016/j.dib.2022.107917

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE