| 研究生: |
周家宏 Chou, Chia-Hung |
|---|---|
| 論文名稱: |
最佳化船型預測之研究 Optimizing Hull Surface |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 最佳化船型 、最佳化 |
| 外文關鍵詞: | Optimizing |
| 相關次數: | 點閱:30 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多工程問題上常使用傳統正算方法來求解其物理量,亦就是探討將已知條件輸入系統模式來分析其輸出為何,這就是正算問題(Direct Problem)。然而在許多實際工程問題中,存在著很多物理量因為客觀條件限制或量測技術不足而無法直接計算或量測其值。因此,為了取得所需之物理量,必須利用反算法藉由其它已知的參數及物理量反求之,這就是逆向或反算問題(Inverse Problem),而反算問題也已大量被應用於許多幾何形狀的最佳化設計,稱之為反算設計問題(Inverse Design Problem)
就船用流力上來講一般所謂正算問題亦即已知船型來計算其壓力分佈或其阻力。而反算設計問題正好相反,亦即利用已知最佳的壓力分佈或最小的興波阻力(設計者可依設計的限制條件需求而定)進而反算設計求出最佳之船型。此篇研究中利用FLOWTECH International AB公司所開發的商用套裝軟體SHIPFLOW做為吾正算問題之依據,再配合反算設計問題中之拉凡格式法(Levenberg-Marguardt Method)來對本問題建立最佳船型之預測。
For many engineering problems, the physical quantities can be obtained by using some known boundary conditions. This is the so-called “Direct Problem”. However, there are many physical quantities in the engineering problems that can not be measured or calculated directly, we should use some measurement information to estimate them. This is the so-called Inverse Problem. Something the technique of Inverse Problem can be use in Inverse Design Problem.
The direct problem for ship fluid dynamics involves the determination of the hull surface pressure distribution and resistance when the hull form is given. On the other hand the inverse design problem is concerned with the determination of the modified hull form from the given desire pressure distribution.
The present work addresses the development of FLOWTECH and an efficient method for parameter estimation, i.e. the Levenberg-Marquardt algorithm, in estimating the new hull form that satisfies the desired pressure distribution. The Levenberg-Marquardt method has proved to be a powerful algorithm in inverse calculations especially in parameters estimation.
1. D. C. Wyatt and P. A.Chang, “Development and Assessment of a Total Resistance Optimized Bow for the AE-36.” Marine Technology, Vol. 31, No. 2, pp.149-160, April 1994.
2. L. Larsson, K. J. Kim, B. Espring and D. Holm, “Hydrodynamic Optimization using SHIPFLOW.” Proceeding of Fifth International Symposium on Practical Design of Ships and Mobile Units.Vol. 1, pp.1.1-1.16, 1992, Newcastle upon Tyne, UK.
3. T. W., Lowe, M. I. G. Bloor and M. J. Wilson, “The Automatic
Functional Design of Hull Surface Geometry.” Journal of Ship Research, Vol.
38, No. 4, pp.319-328, Dec. 1994.
4. C. H. Huang, C. C. Chiang and S. K. Chou, “An Inverse Geometry
Design Problem in Optimizing Hull Surfaces.” Journal of Ship Research, Vol.
42, No. 2, pp.79-85, 1998.
5. P. F. Chen and C. H. Huang, “An Inverse Hull Design Problem in
Optimizing the Desired Wake of Ship.”, Journal of Ship Research, 2002
(accepted in press).
6. J. Goren, S. Helvacioglu and M. Insel, “Bow Form Optimization of
Displacement Ships by Mathematical Programming.” Ship Technology Research,
Vol. 44, pp.80-87, 1997.
7. K. Ma and I. Tanaka, “A Study of Minimum Resistance Hull Form with
Consideration of Separation (2nd Report).” J. Kansai Soc. N. A., Japan, No.
222, pp.41-47(in Japanese), September 1994.
8. C. E. Janson, and L. Larsson, “A Method for the Optimization of Ship
Hulls From a Resistance Point of View.” Proceedings:21st Symposium on Naval
Hydrodynamics. Trondheim, Norway. 1996.
9. M. Mifune, A. Masuko, and S. Ogiwara, “An Approach of Hull Form
Optimization Oriented to the Wave Resistance.” Proceedings: Sixth
International Symposium on Practical Design of Ships and Mobile Units, pp.38-
49, 1995.
10. Saad A. Ragab, “An Adjoint Formulation for Shape Optimization in
Free-Surface Potential Flow.” Journal of Ship Research, Vol. 45, No. 4,
pp.269-278, 1998.
11. C. H. Huang and M. N. Ozisik, “A Direct Integration Approach for
Simultaneously Estimating Temperature Dependent Thermal Conductivity and Heat
capacity.” Numerical Heat Transfer. Part A, Vol. 20, pp. 95-110, 1991.
12. C. H. Huang and M. C. Huang, “Inverse Problem in Determining the
Normal and Tangential Drag Coefficients of Marine Cables.” Journal of Ship
Research, Vol. 38, No. 4, pp. 296-301, 1994.
13. C. H. Huang and D. M. Wang “Statistical Consideration for the
Estimation of Spatially Varying Sound Velocity and Water Density in Acoustic
Inversion.” Inverse Problems in Engineering,Vol. 4, pp. 129-151, 1996.
14. Tribon Initial Design Lines for Production-Training Guide. Kockums
Computer Systems AB. 1999.
15. Tribon M1 Lines-User’s Guide. Tribon Solutions. 2000.
16. L. Larsson, SHIPFLOW user’s manual. FLOWTECH International AB, 1999.
17. D. F. Rogers and J. A. Adams, “Mathematical Elements for Computer
Graphics.” 2nd Edition, McGraw-Hill, chapter 4. 1990.
18. 國科會九十年度船舶減阻整合計劃報告書.
19. 浯江號試俥資料, 豐國造船廠.
20. 郭啟祿 編譯, “船舶阻力與推進(馬力及阻力計算法及參考圖表集).”,
1991.
21. G. van Oortmerssen, “CFD and CAD in Ship Design.” Proceedings of
the International Symposium on CFD and CAD in Ship Design, Wageningen, The
Netherlands, 25-26 September, 1990.
22. V. M. Pashin, V. A. Bushkovsky and E. L. Amromin, “Determination of
Three-Dimensional Body Forms from Given Pressure Distribution Over Their
Surface.” Journal of Ship Research, Vol. 40, No.1, pp. 22-27, March 1996.
23. G. E. Gadd, “The Optimization of Hull Forms Using Viscous and Wave
Resistance Theory.” National Maritime Institute, 1983.
24. J. J. Stoker, Water Wave. Institute of Mathematical Sciences, New
York, chapter 9, 1968.