簡易檢索 / 詳目顯示

研究生: 陳維紳
Chen, Wei-Shen
論文名稱: 新型奈米壓印製程結合金屬輔助化學蝕刻應用於製作奈米結構
Innovative Nano-Imprinting Lithography in Conjunction with Metal-Assisted Chemical Etching for Fabricating Nanostructures
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 金屬輔助化學蝕刻奈米壓印微影技術舉離製程中介層阻劑壓印複合模具
外文關鍵詞: Metal-Assisted Chemical Etching, Nanoimprint lithography, Lift-off process, Interfacial resist, Composite imprinting mold
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一種新型的奈米壓印製程技術,以結合金屬輔助化學濕蝕刻(Metal Assistant Chemical Etching, MACE)的製程,應用於製作矽基板上的奈米結構。金屬輔助化學蝕刻製程一般是以傳統黃光微影技術與金屬舉離(Lift off)製程,於矽基板上定義一具微/奈米特徵的金屬催化劑圖形然後進行輔助化學蝕刻;本研究則是使用奈米壓印技術搭配舉離製程來定義此一金屬圖形。由於奈米壓印需要以乾蝕刻的氧電漿去除壓印阻劑的殘留層,可能會造成矽基板表面殘留有機物,影響到後續的金屬輔助化學蝕刻;因此,本論文提出一種雙阻劑的壓印製程,在壓印阻劑與基板之間增加一層中介層阻劑,可以在乾蝕刻後,再以濕蝕刻的方式去除矽基板上殘留的中介層阻劑,維持矽基板表面的潔淨度,進而提升後續金屬輔助化學蝕刻的蝕刻品質與蝕刻速率。
    實驗製程上,以週期300 nm、直徑160 nm的六角最密洞狀與柱狀結構進行 4”~ 6” 吋矽晶圓面積的金屬層圖案定義,以傳統奈米壓印製程與新型雙阻劑奈米壓製程兩種壓印方式,以及三種去除殘留層的方法,探討乾式蝕刻與濕蝕刻去除殘留層對金屬輔助化學蝕刻的影響;最後,將所發展與建立的奈米製程技術應用於矽母模仁的複製,得到相當成功的實驗結果。

    關鍵字:金屬輔助化學蝕刻、奈米壓印微影技術、舉離製程、中介層阻劑、壓印複合模具。

    This thesis develops a new type of hot embossing nano-imprinting technology which can work along with Metal Assistant Chemical Etching (MACE) to fabricate nanostructures on silicon wafers. Metal-assisted chemical etching usually uses photolithography and metal lift-off processes to define micro/nano-scaled metallic patterns as the catalysis layer in MACE. In this study, nano-imprint lithography will replace photolithography to define the metallic catalysis patterns. However, dry etching using oxygen plasma is needed for removing residual resist after imprinting in conventional nano-imprinting process, but could leave organic residuals on the silicon wafer surface and hence affect the subsequent metal-assisted chemical etching. Therefore, a new type of nano-imprinting process is developed by inserting a new interfacial resist layer in between the imprinting resist layer and the substrate. After dry etching, the remaining interfacial resist can be completely removed by wet etching. This can keep the silicon substrate surface being clean and guarantee the etching quality and etching rate of metal-assisted chemical etching.
    In the experiments, metallic patterns with arrayed and hexagonally close-packed hole- and pillar-structures with a period of 300 nm and a diameter of 160 nm are patterned on 4” to 6” silicon wafers. Both conventional and the proposed new nano-imprinting processes along with three different methods for removing residual layers are experimentally investigated to explore the influence of dry etching and wet etching of residual layers on the metal-assisted chemical etching. The developed new nano-fabrication processes and technologies are applied to the replication of silicon master molds, and successful results are observed.

    Keywords:Metal-Assisted Chemical Etching, Nanoimprint lithography, Lift-off process, Interfacial resist, Composite imprinting mold.

    摘要 i Abstract iii 誌謝 xxi 圖目錄 xxv 表目錄 xxxi 第一章 緒論 1 1.1 奈米技術回顧 2 1.1.1 熱壓成形奈米壓印 2 1.1.2 步進感光成形奈米壓印 3 1.1.3軟微影技術 4 1.1.4 金屬轉印技術 5 1.2 金屬輔助化學蝕刻技術回顧7 1.3 論文架構 9 第二章 壓印系統架構與實驗架構 10 2.1 奈米壓印系統介紹 10 2.2 奈米壓印製程前處理 14 2.2.1 矽母模仁與矽基板的清洗 14 2.2.2矽母模仁表面處理製程 17 2.3 複合式奈米級壓印模仁 23 2.3.1 奈米壓印技術瓶頸 23 2.3.2 壓印模仁的材料選用 25 2.3.3 可撓性PFPE複合式壓印模仁製作 28 第三章 新型奈米壓印結合金屬輔助化學蝕刻 33 3.1 金屬輔助化學蝕刻原理 35 3.2實驗流程 39 3.2.1 壓印模仁製備與壓印步驟 41 3.2.2 壓印熱塑化阻劑 42 3.3 壓印結果 53 3.4 舉離製程結果 70 3.5 奈米柱與洞蝕刻結果 74 第四章 利用奈米壓印結合金屬輔助化學蝕刻-複製奈米模仁 81 4.1 壓印模仁製備 81 4.2壓印結果 86 4.3舉離結果 91 4.4 蝕刻結果 93 第五章 結論與未來展望 99 5.1結論 99 5.2 未來展望 100 參考文獻 101

    [1] P. R. Fabian and S. Y. Chou, “Lithography and other patterning techniques
    for future electronics,” Proceedings of the IEEE., vol. 96, no. 2, pp. 248-270,
    2008.
    [2] S. Y. Chou, P. R. Krausse and P. J. Renstrom, “Imprint of sub‐25 nm vias
    and trenches in polymers,” Appl. Phys. Lett., vol. 6, no. 21, pp. 3114-3116,
    1995.
    [3] S. Y. Chou, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 14, no. 6,
    pp. 4129-4133, 1996.
    [4] M. Colburn et al., “Step and flash imprint lithography: a new approach to
    high-resolution patterning,” International Society for Optics and
    Photonics., vol. 3676, pp. 379-389, 1999.
    [5] Y. Xia et al., “Non-photolithographic methods for fabrication of
    elastomeric stamps for use in microcontact printing,” Langmuir, vol. 12,
    no. 16, pp. 4033-4038, 1996.
    [6] Y. C. Lee and C. Y. Chiu, “Micro-/nano-lithography based on the contact
    transfer of thin film and mask embedded etching,” J. Micromech.
    Microeng., vol. 18, no. 7, p. 075013, 2008.
    [7] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H_2 O_2
    produces porous silicon,” Appl. Phys. Lett., vol. 77, no.16, pp. 2572-2574,
    2000.
    [8] H. Fang et al., “Fabrication of slantingly-aligned silicon nanowire arrays for
    solar cell applications,” Nanotechnology, vol. 19, no. 25, p. 255703, 2008.
    [9] C. Y. Chen et al., “Morphological control of single‐crystalline silicon
    nanowire arrays near room temperature,” Adv. Mater., vol. 20, no. 20, pp.
    3811-3815, 2008.
    [10] C. Chartier, B. Stephane, and C. Levy-Clement, “Metal-assisted chemical
    etching of silicon in HF–H_2 O_2,” Electrochim. Acta., vol. 53, no. 17, pp.
    5509-5516, 2008.
    [11] M. L. Zhang et al., “Preparation of large-area uniform silicon nanowires
    arrays through metal-assisted chemical etching,” J. Phys. Chem. C, vol.
    112, no. 12, pp. 4444-4450, 2008.
    [12] C. L. Lee et al., “Pore formation in silicon by wet etching using
    micrometre-sized metal particles as catalysts,” J. Mater. Chem. A, vol. 18,
    no. 9, pp. 1015-1020, 2008.
    [13] K. Tsujino and M. Matsumura, “Morphology of nanoholes formed in
    silicon by wet etching in solutions containing HF and H_2 O_2 at different
    concentrations using silver nanoparticles as catalysts,” Electrochimica
    Acta., vol. 53, no. 1, pp. 28-34, 2007.
    [14] S. Cruz, H. D. Arne, and M. Jorg, “Fabrication and optimization of porous
    silicon substrates for diffusion membrane applications,” J. Electrochem.
    Soc., vol. 152, no. 6, p. 418, 2005.
    [15] H. Fang et al., “Silver catalysis in the fabrication of silicon nanowire
    arrays,” Nanotechnology, vol. 17, no. 15, p. 3768, 2006.
    [16] Z. Huang et al., “Ordered arrays of vertically aligned [110] silicon
    nanowires by suppressing the crystallographically preferred<100>
    etching directions,” Nano Lett., vol. 9, no. 7, pp. 2519-2525, 2009.
    [17] W. K. Choi et al., “Synthesis of silicon nanowires and nanofin arrays using
    interference lithography and catalytic etching,” Nano Lett., vol. 8, no. 11,
    pp. 3799-3802, 2008.
    [18] Z. Huang et al., “Extended arrays of vertically aligned sub-10 nm
    diameter [100] Si nanowires by metal-assisted chemical etching,” Nano
    Lett., vol. 8, no .9, pp. 3046-3051, 2008.
    [19] S. L. Chung, C. H. Lee and H. C. Lee, “A study of the synthesis,
    characterization, and kinetics of vertical silicon nanowire arrays on (001) Si
    substrates,” J. Electrochem. Soc., vol. 155, no. 11, p. 711, 2008.
    [20] Z. Huang, H. Fang and J. Zhu, “Fabrication of silicon nanowire arrays with
    controlled diameter, length, and density,” Adv. Mater., vol. 19, no. 5, pp.
    744-748, 2007.
    [21] K. Q. Peng et al., “Fabrication of single‐crystalline silicon nanowires by
    scratching a silicon surface with catalytic metal particles,” Adv. Funct.
    Mater., vol. 16, no. 3, pp.387-394, 2006.
    [22] Z. Huang et al., “Metal‐assisted chemical etching of silicon,” Adv. Mater.,
    vol. 23, no. 2, pp. 285-308, 2011.
    [23] 杜珮綺, “奈米壓印暨黑光阻嵌入式軟性光罩之微奈米製程與應用,” 國立成功
    大學機械工程學系碩士論文, 2019.
    [24] 朱致緯, “奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測,” 國
    立成功大學機械工程學系碩士論文, 2019.
    [25] K. Mogi et al., “Nanometer-level high-accuracy molding using a photo-
    curable silicone elastomer by suppressing thermal shrinkage,” RSC Adv.,
    vol. 5, no. 14, pp. 10172-10177, 2015.
    [26] N. Chidambaram et al., “High fidelity 3D thermal nanoimprint with UV
    curable polydimethyl siloxane stamps,” J. Vac. Sci. Technol. B, vol. 34, no
    .6, p. 401, 2016.
    [27] 陳宥翔, “可控制壓力分佈的奈米壓印技術與軟性光罩的曲面黃光微 影製程,”
    國立成功大學機械工程學系碩士論文, 2020.
    [28] T. T. Truong et al., “Soft lithography using acryloxy perfluoropolyether
    composite stamps,” Langmuir, vol. 23, no. 5, pp. 2898-2905, 2007.
    [29] D. R. M. van and M. W. Bockrath, “Solvent-resistant elastomeric
    microfluidic devices and applications,” Ph.D. thesis, California Institute of
    Technology, Pasadena, CA, 2006.
    [30] 半導體晶圓廠的清潔劑,三聯科技股份有限公司 /張和裕
    [31] V. Lehmann, Electrochemistry of Silicon Instrumentation, Science,
    Materials and Applications. Weinheim: Wiley-VCH, 2002.
    [32] X. Geng et al., “Metal-assisted chemical etching using Tollen’s reagent
    to deposit silver nanoparticle catalysts for fabrication of quasi-ordered
    silicon micro/nanostructures,” J. Electron. Mater., vol. 40, no. 12, pp.
    2480-2485, 2011.
    [33] K. Q. Peng et al., “Fabrication of single‐crystalline silicon nanowires by
    scratching a silicon surface with catalytic metal particles,” Adv. Funct.
    Mater., vol. 16, no. 3, pp. 387-394, 2006.
    [34] 巫宗華, “利用自組裝高分子共聚物模板與金屬輔助化學蝕刻製備奈微複合結構
    之研究,” 國立清華大學工程與系統科學系碩士論文, 2015.
    [35]K. Peng et al., “Motility of metal nanoparticles in silicon and induced
    anisotropic silicon etching,” Adv. Funct. Mater., vol. 18, no. 19, pp. 3026-
    3035, 2008.
    [36] M. L. Zhang et al., “Preparation of large-area uniform silicon nanowires
    arrays through metal-assisted chemical etching,” J. Phys. Chem. C, vol
    112, no. 12, pp. 4444-4450, 2008.
    [37] X. H. Xia et al., “Galvanic cell formation in silicon/metal contacts the
    effect on silicon surface morphology,” Chem. Mater., vol. 12, no. 6, pp.
    1671-1678, 2000.
    [38] K. Q. Peng et al., “Fabrication of single‐crystalline silicon nanowires by
    scratching a silicon surface with catalytic metal particles,” Adv. Funct.
    Mater., vol. 16, no. 3, pp. 387-394, 2006.
    [39] L. Kong et al., “Minimizing isolate catalyst motion in metal-assisted
    chemical etching for deep trenching of silicon nanohole array,” ACS Appl.
    Mater. Interfaces, vol. 9, no. 24, pp. 20981-20990, 2017.
    [40] D. Brodoceang et al., “Dense arrays of uniform submicron pores in silicon
    and their applications,” ACS Appl. Mater. Interfaces, vol. 7, no. 2, pp.
    1160-1169, 2015.
    [41] C. Chang, and A. Sakdinawat, “Ultra-high aspect ratio high-resolution
    nanofabrication for hard X-ray diffractive optics,” Nat. Commun., vol. 5,
    no. 1, pp. 1-7, 2014.
    [42] K. Q. Peng et al., “High-performance silicon nanohole solar cells,” J. Am.
    Chem. Soc., vol. 132, no. 20, pp. 6872-6873, 2010.
    [43] F. Guder et al., “Tracing the migration history of metal catalysts in metal-
    assisted chemically etched silicon,” ACS Nano, vol. 7, no. 2, pp. 1583-
    1590, 2013.
    [44] Micro Resist Technology,“ mr-l 7000R Series:Thermoplastic Polymer for
    Nanoimprint Lithography with Optimized Release Properties,” mr-l
    7000R series Data Sheet, Rev May 2020.
    [45] Kayaku Advanced Materials, “LOR and PMGI Resists for Bi-layer Lift-off
    Processing,” LOR/PMGI Technical Data Sheet, Rev. B, November 2019.
    [46] K. Q. Peng et al., “Fabrication and photovoltaic property of ordered
    macroporous silicon,” Appl. Phys. Lett., vol. 95, no. 14, p. 143119, 2009.
    [47] C. Q. Lai, and W. K. Choi, “Synthesis of free-standing curved Si nanowires
    through mechanical failure of a catalyst during metal assisted chemical
    etching,” Phys. Chem. Chem. Phys., vol. 16, no. 26, pp. 13402-13408,
    2014.
    [48] C. Q. Lai et al., “Mechanics of catalyst motion during metal assisted
    chemical etching of silicon,” J. Phys. Chem. C, vol. 117, no. 40, pp. 20802-
    20809, 2013.
    [49] K. Peng et al., “Motility of metal nanoparticles in silicon and induced
    anisotropic silicon etching,” Adv. Funct. Mater., vol. 18, no. 19, pp. 3026-
    3035.
    [50] O. Hildreth, J. LIN, W. Wong, and C. Ping, “Effect of catalyst shape and
    etchant composition on etching direction in metal-assisted chemical
    etching of silicon to fabricate 3D nanostructures,” ACS Nano, vol. 3, no.
    12, pp. 4033-4042, 2009.
    [51] K. Rykaczewski et al., “Guided three-dimensional catalyst folding during
    metal-assisted chemical etching of silicon,” Nano Lett., vol. 11, no. 6, pp.
    2369-2374, 2011.
    [52] R. C. Tiberio et al., “Vertical directionality-controlled metal-assisted chemical
    etching for ultrahigh aspect ratio nanoscale structures,” J. Vac. Sci. Technol. B,
    vol. 32, no. 6, p. 06FI01, 2014.

    下載圖示 校內:2025-09-30公開
    校外:2025-09-30公開
    QR CODE