簡易檢索 / 詳目顯示

研究生: 林章能
Lin, Jhang-Neng
論文名稱: 以深度學習分析機車駕駛風險指跡應用於駕駛行為車險服務
Analyzing Motorcyclist's Risk-aware Fingerprint for the Usage-based Insurance by Using Deep learning
指導教授: 李威勳
Li, Wei-Hsun
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 駕駛行為車險服務深度學習機車安全駕駛安全評估駕駛指跡
外文關鍵詞: Usage-based Insurance, deep learning, motorcycle safety, driving risk assesment, Risk-aware fingerprint
相關次數: 點閱:111下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 駕駛行為車險服務(Usage-based insurance, UBI)是一種新興的汽車保險服務,基於個人駕駛行為及駕駛風險的不同,而反應在客製化的保險費率上。從整體社會的角度來看,UBI可以有效降低用路人的交通風險,提升整體道路的安全水準;從保險業者的觀點而言,推出UBI車險服務能比同業更具有競爭力。然而現行的UBI文獻中仍沒有以機車為標的相關研究,且台灣的特殊地域與人文環境,造就了不同於國外機車的駕駛特性;此外,隱私權、個資安全意識的提升也造成UBI的推行困難。若是推出以機車為標的的UBI車險服務,把UBI車險服務的優勢複製於機車車險市場上,將能創造更好的行車環境,緩解機車傷亡事故產生,亦可以使高事故率的機車族群擁有更好的安全保障。
    為突破機車UBI研究匱乏的困境,本研究提出一機車車險服務架構,其中包含提出適合機車的多維度駕駛風險等級、建立駕駛風險指跡模型(Risk-aware fingerprint model)。本研究以三軸加速度、三軸角速度探討機車的操作行為,提出一屬於機車標的的風險等級;利用神經網路之運算特性,透過自編碼神經網路(Autoencoder)萃取車輛動態資訊,將高維原始數據壓縮編碼成低維度的駕駛風險指跡,並透過T-SNE視覺化檢視資料特徵萃取效果,再透過不同深度學習與機器學習進行駕駛風險等級之預測,找出最佳駕駛風險指跡模型。本研究提出的模型及想法,不僅可有效改善過往研究的限制,亦可幫助突破過往UBI推行之困難,從根本改善駕駛人行為,並且提升道路安全。

    Usage Based Insurance (UBI) is a trend in auto insurance industry over the world which is based on individual driving behavior and driving risk, reflecting in the customized insurance rates. From the perspective of society, UBI service can effectively reduce the risks of passers-by and improve the overall road safety level. From the perspective of the insurance industry, the introduction of UBI service can be more competitive than competitions. However, there is still no relevant research on motorcycles in the current UBI literature, and Taiwan’s geographical and cultural environment has created special driving characteristics that are different from those of motorcycles in foreign; in addition, the increase in privacy and personal safety awareness has also caused UBI’s difficulty in implementation. If the UBI service with motorcycles as the target is launched, the advantages of UBI service in the automobile insurance market will be copied to the motorcycle insurance market. Also, it will create a better driving environment, alleviate motorcycle casualties, and also enable the drivers protected by insurance.
    In order to break through the lack of research on motorcycle UBI, this research proposes a UBI service framework for motorcycles, including proposing multi-dimensional driving risk level suitable for motorcycles and proposing risk-aware fingerprint model. This research explores the operation of the motorcycle with three-axis acceleration and three-axis angular velocity and proposes a risk level standard belonging to the motorcycle; Moreover, using the computational characteristics of the neural network, the dynamic driving information is extracted through the autoencoder. The original data with high-dimensional information is compressed and encoded into low-dimensional driving risk-aware fingerprint (RAF). The performance of feature extraction by autoencoder is visually inspected through T-SNE. Additionally, using RAF with different deep learning and machine learning classifiers to predict risk level and find the best driving risk-aware fingerprint model. The models and ideas proposed in this study can not only effectively improve the limitations of previous studies, but also help break through the difficulties of the implementation of UBI in the past, fundamentally improve driver behavior, and improve road safety.

    摘要 i 致謝 vii 目錄 viii 圖目錄 xi 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究問題 4 1.2.1 UBI服務的隱私權問題 5 1.2.2 缺乏機車版風險預測模型 5 1.2.3 過往汽車風險研究無法套用於機車 6 1.2.4 以有限的資訊源判別機車危險行為困難 6 1.2.5 主流模型的限制 6 1.2.6 缺乏代表駕駛風險的真值 8 1.3 研究動機與目的 9 1.4 研究流程 10 第二章 文獻探討 12 2.1 UBI模型 12 2.2 機車駕駛行為與安全研究 14 2.3 深度學習演算法運用於時間序列 16 2.4 駕駛風險分析 18 第三章 研究架構與方法 21 3.1 模型訓練階段 (offline) 21 3.1.1 Phase 1 - 真值標記(Labeling) 22 3.1.2 Phase 2 - 訓練自編碼神經網路模型 28 3.1.3 Phase 3 - 建立駕駛風險指跡模型 30 3.1.4 Phase 4 - 旅次風險等級預測 31 3.2 實施階段(online) 32 3.3 深度學習、機器學習演算法選擇 32 第四章 實驗分析與結果討論 34 4.1 實驗資料 34 4.1.1 原始資料來源 34 4.1.2 資料蒐集 34 4.1.3 資料前處理 35 4.1.4 真值標記結果 36 4.2 研究假設與實驗設計 38 4.2.1 研究假設 38 4.2.2 實驗設計 38 4.3 實驗結果 45 4.3.1 自動編碼器訓練結果 45 4.3.2 實驗一 48 4.3.3 實驗二 51 4.3.4 實驗三 55 4.3.5 實驗四 - 旅次風險等級分析(Phase 4) 59 4.3.6 實驗小結 61 第五章 結論與討論 62 5.1 結論 62 5.2 討論 63 第六章 未來研究方向 65 參考文獻 67

    Attal, F., et al. (2014). Powered two-wheeler riding pattern recognition using a machine-learning framework. IEEE Transactions on Intelligent Transportation Systems, 16(1), 475-487.
    Attal, F., et al. (2018). Powered two-wheelers critical events detection and recognition using data-driven approaches. IEEE Transactions on Intelligent Transportation Systems, 19(12), 4011-4022.
    Baecke, P., et al. (2017). The value of vehicle telematics data in insurance risk selection processes. Decision Support Systems, 98, 69-79.
    Bian, Y., et al. (2018). Good drivers pay less: A study of usage-based vehicle insurance models. Transportation research part A: policy and practice, 107, 20-34.
    Chen, C., et al. (2019). A graphical modeling method for individual driving behavior and its application in driving safety analysis using GPS data. Transportation research part F: traffic psychology and behaviour, 63, 118-134.
    Chen, J., et al. (2019). Driving safety risk prediction using cost-sensitive with nonnegativity-constrained autoencoders based on imbalanced naturalistic driving data. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4450-4465.
    Dong, W., et al. (2016). Characterizing driving styles with deep learning. arXiv preprint arXiv:1607.03611.
    Dong, W., et al. (2017). Autoencoder regularized network for driving style representation learning. arXiv preprint arXiv:1701.01272.
    Hsiao, C. L. (2019). Design of a Usage-Based Insurance Platform for Evaluating Driver’s Risk by Big Data Analysis (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/527gz7
    Hu, J., et al. (2020). Abnormal driving detection with normalized driving behavior data: a deep learning approach. IEEE Transactions on Vehicular Technology.
    Huang, Y., et al. (2019). Automobile insurance classification ratemaking based on telematics driving data. Decision Support Systems, 127, 113156.
    Kurylowicz, L. (2016). Usage-Based Insurance: the concept and study of available analyses. Wiadomości Ubezpieczeniowe, 4.
    Lin, J., et al. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and knowledge discovery, 15(2), 107-144.
    Ma, Y.-L., et al. (2018). The use of context-sensitive insurance telematics data in auto insurance rate making. Transportation research part A: policy and practice, 113, 243-258.
    Mantouka, E. G., et al. (2019). Identifying driving safety profiles from smartphone data using unsupervised learning. Safety Science, 119, 84-90.
    Nuswantoro, F. M., et al. (2020). Abnormal Driving Detection Based on Accelerometer and Gyroscope Sensor on Smartphone using Artificial Neural Network (ANN) Algorithm. Paper presented at the 2020 International Electronics Symposium (IES).
    Paefgen, J., et al. (2014). Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data. Transportation research part A: policy and practice, 61, 27-40.
    Sasidhar, K., et al. (2019). Two wheeler rash drive detection using smartphones. Paper presented at the 2019 11th International Conference on Communication Systems & Networks (COMSNETS).
    Wu, S.-s. (2020). Identify Highway Crash Hotspot Based on Driving Behavior Data Analyzing.
    Zhang, J., et al. (2019). Attention-Based Convolutional and Recurrent Neural Networks for Driving Behavior Recognition Using Smartphone Sensor Data. IEEE Access, 7, 148031-148046.
    Zhou, L., et al. (2018). Location privacy in usage-based automotive insurance: Attacks and countermeasures. IEEE Transactions on Information Forensics and Security, 14(1), 196-211.

    下載圖示 校內:2024-08-17公開
    校外:2024-08-17公開
    QR CODE