簡易檢索 / 詳目顯示

研究生: 張珮鈺
Jhang, Pei-Yu
論文名稱: 基於相位調整之雙視角轉多視角生成系統
A Phase-based Stereoscopic to Multi-view Video Generation System
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 66
中文關鍵詞: 多視角影像虛擬影像多視角生成
外文關鍵詞: view synthesis, phase-based view expansion, multi-view generation
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於裸眼立體顯示器同時顯示多組虛擬視角給使用者選擇,因此能獲得較佳的立體觀賞品質。目前立體視訊均為雙視角影像,因此如何將現有的雙視角生成多視角影像便成為一門重要的議題。現今的多視角影像生成系統皆是基於深度影像繪圖系統生成虛擬視角影像,但基於深度影像繪圖系統存在兩大難題,一為高精確度的深度圖計算,另一為補洞。另外,基於深度影像繪圖系統於影像中有運動模糊、失焦、透明或反射物體等情況下,難以得到很好的虛擬視角的品質。本論文提出一未使用任何深度資訊,基於相位調整的多視角生成系統。本系統的主要架構是基於由Didyk等人所提出的基於相位的多視角生成技術下進行改進,主要提出利用內插方法預測虛擬視角影像與原視角影像的相位差異,進而產生出多組虛擬視角。在實驗結果上,亦證明本系統能有效改善原始的基於相位的多視角生成技術,並有效地增進虛擬視角影像的品質。

    Multi-view autostereoscopic displays provide a comfortable visual experience because multiple views are presented for viewers to offer a desired motion parallax. In general, we could utilize a depth image-based rendering (DIBR) technique to obtain multiple virtual views. However, there are two major challenges of DIBR-based methods, which require high accurate depth map estimation and hole-filling functions. Moreover, the DIBR-based methods cannot perform well for challenging video scenes with defocus blur, motion blur, transparent materials, and specularities. In this thesis, a novel phase-based multi-view generation system is proposed without using any depth information. The main kernel concept of the proposed system is based on the phase-based view expansion technique proposed by Didyk et al. The proposed system presented the phase difference prediction procedure by using simple interpolation methods. Experimental results prove that the proposed system performs better than the phase-based view expansion method and the DIBR-based method.

    摘 要 I Abstract II 誌謝 III Contents IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Principle of Stereoscopy 2 1.1.2 Stereoscopic Displays 4 1.1.3 Relevant Researches with 3D Content Generations 4 1.2 Motivations 6 1.3 Literature Review 7 1.4 Thesis Organization 9 Chapter 2 Related Work 10 2.1 Depth Image-based Rendering (DIBR) Algorithm 10 2.1.1 Depth Map Pre-processing 11 2.1.2 3D Image Warping 11 2.1.3 Hole-filling 12 2.2 Steerable Pyramid 13 2.2.1 Steerable Filter 13 2.2.2 Steerable Pyramid 15 2.2.3 Complex-valued Steerable Pyramid 17 2.3 Phase-based Motion Processing 18 2.3.1 Phase-based Motion Magnification 19 2.3.2 Phase-based View Expansion 22 Chapter 3 The Proposed System 25 3.1 Problem Statements 25 3.1.1 Large Displacement 26 3.1.2 Non-integer Magnification Factors 27 3.2 The Proposed System Overview 29 3.3 Spatial Decomposition 30 3.4 Magnitude and Phase Computation 32 3.5 Phase Difference Prediction 33 3.5.1 Overview 33 3.5.2 Scaling Factor Determination 34 3.5.3 Phase Difference Prediction 36 3.6 Phase Modification 39 Chapter 4 Experimental Results 42 4.1 Downsampling Filter Analysis 42 4.1.1 Objective Comparisons 43 4.1.2 Comparisons of Subjective Quality 49 4.2 Comparisons to Other Methods 51 4.2.1 Multi-view Comparisons 52 4.2.2 Temporal Comparisons 60 Chapter 5 Conclusions and Future Work 63 References 64

    [1] P. Didyk, P. Sitthi-amorn, W. T. Freeman, F. Durand, and W. Matusik, “Joint view expansion and filtering for automultiscopic 3D displays,” ACM Trans. Graph., vol. 32, no. 6, 2013.
    [2] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph., vol. 32, no. 4, 2013.
    [3] M. Zwicker, W. Matusik, F. Durand, and H. Pfister, “Antialiasing for Automultiscopic 3D displays,” Eurographics Conference on Rendering Techniques, Eurographics Association, pp. 73–82, 2006.
    [4] A. Tsai, M. H. Chia, and W. K. Liu, “Two view to N-view conversion without depth,” in Proc. IEEE Conf. Visual Communication and Image Processing., pp. 1–4, Nov. 2011.
    [5] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving warps for 3D video stabilization,” ACM Trans. Graph., vol. 28, no. 44, 2009.
    [6] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1150–1157, Sep. 1999.
    [7] M. Solh and G. Alregib, “Depth-less 3D rendering,” in Proc. IEEE Conf. Signals, Systems and Computers, pp. 1735-1739, Nov. 2012.
    [8] C. Liu, A. Torralba, W. T. Freeman, F. Durand and E. H. Adelson, “Motion magnification,” ACM Trans. Graph., vol. 24, pp. 519–526, Jul. 2005.
    [9] H. Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand and W. T. Freeman, “Eulerian video magnification for revealing subtle changes in the world,” ACM Trans. Graph., vol. 31, no. 65, Jul. 2012.
    [10] W. B. Welling, Photography in America: The formative years, 1839-1990 – A documentary history. New York: Thomas Y. Crowell Company, Nov. 1978.
    [11] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Information Theory, vol. 38, pp. 587–607, Mar. 1992.
    [12] E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: a flexible architecture for multi-scale derivative computation,” IEEE Int. Conf. Image Processing, vol. 3, pp. 444–447, Oct. 1995.
    [13] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth images for 3D TV,” IEEE Trans. Broadcast., vol. 51, pp. 191–199, Jun. 2005.
    [14] L. McMillan, “An image based approach to three-dimensional computer graphics,” Ph.D. dissertation, North Carolina Univ., Chapel Hill, NC, USA, 1997.
    [15] W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, pp. 891–906, Sep. 1991.
    [16] D. J. Fleet and A. D. Jepson, “Computation of component image velocity from local phase information,” Int. Journal, Computer Vision, vol. 5, pp. 77–104, Aug. 1990.
    [17] T. Gautama and M. M. V. Hulle, “A phase-based approach to the estimation of the optical flow field using spatial filtering,” IEEE Trans. Neural Networks, vol. 13, pp. 1127–1136, Sep. 2002.
    [18] W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Motion without movement,” ACM SIGGRAPH, Computer Graph., vol. 25, no. 4, pp.27–30, Jul. 1991.
    [19] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Int. Journal, Computer Vision, vol. 40, pp. 49–70, Oct. 2000.
    [20] E. P. Simoncelli, W. T. Freeman, E. H. Adelson and D. J. Heeger, “Wavelet image transforms with continuous parameterization,” Vision and Modeling Technical Report 161, The Media Lab, MIT, 20 Ames St., Cambridge, MA 02139, 1991.
    [21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Processing, vol. 13, pp. 600–612, Apr. 2004.
    [22] J. W. Shi, “Fast disparity estimation based on cost-reproduced local stereo matching for high resolution video sequence,” M.S. thesis, National Cheng Kung University, Tainan, 2014.
    [23] K. H. Lee, “Multi-view synthesis algorithms based on depth and texture consistency,” M.S. thesis, National Cheng Kung University, Tainan, 2011.

    無法下載圖示 校內:2020-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE