簡易檢索 / 詳目顯示

研究生: 朱智鴻
Chu, Chih-Hung
論文名稱: 添加助燒劑及特殊燒結製程對製備氮化鋁導熱陶瓷之燒結研究
Study on the Sintering Additives and Specific Sintering Process of AlN Ceramic
指導教授: 溫紹炳
Wen, Shaw-Bing
林志朋
Lin, Chih-Peng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 特殊燒結製程氮化鋁燒結助劑
外文關鍵詞: Aluminum Nitride, specific sintering process, sintering additives
相關次數: 點閱:75下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討添加不同種類的燒結助劑於兩種AlN粉體中,配合特殊燒結製程製備氮化鋁陶瓷。燒結後試片經XRD晶相鑑定試片晶相為AlN相,成功地將AlN在一般高溫爐中燒結緻密。其關鍵在於特殊燒結製程,有別於過去文獻製備氮化鋁陶瓷皆在還原氣氛爐中燒結緻密,大大降低了生產成本。
    研究中探討添加不同比例的釤系、釓系與釔系等稀土氧化物和不同比例的鈣系的鹼土金屬氧化物相互搭配混合6小時,經真空烘箱加熱50℃、5小時乾燥粉體,然後研磨造粒過100目篩網,造粒粉體以單軸加壓40MPa加壓成型,再冷均壓(CIP)98MPa,以550℃燒除黏結劑PVB,然後將坯體埋入粉末床及氮化硼隔板中,置入氧化鋁坩堝中,放入高溫爐通氮氣加熱至1700℃持溫不同時間進行燒結。燒結後試片藉由XRD分析主要結晶相及二次相成分與數量、以SEM觀察試片破斷面以了解晶粒生長型態、晶粒大小與晶界相分佈位置,以熱傳導分析儀量測試片熱傳導值,並以維氏硬度計量測試片硬度。
    研究結果顯示三種組合助燒劑在1700℃持溫1、3、5時間,可以得到97%以上的相對緻密度,其相對密度與線收縮率及機械性質之維氏硬度值的走勢呈同步變化趨勢,以試片TA3Y1C的相對密度99.4%(3.34g/cm3)與維氏硬度值1310kg/mm2為測量的最高值。相同比例條件下,三種組合助燒劑在1700℃持溫3hr的燒結體試片結晶型態,以試片TA1Y1C較佳,其相對密度98.6%(3.26 g/cm3)、線收縮率17.3%、熱傳導值147 W/mK及維氏硬度1209 kg/mm2 。

    The study was sintering AlN powder with kinds of additives under specific sintering process to manufacture AlN ceramic bodies. It was successful to obtain dense AlN ceramic bodies under 1700℃ of MoSi2 heating furnace. The specific sintering process of this study was different from previously reported which all sintered AlN ceramics under reducing atmosphere of graphite resistance furnace to avoid oxidation. To change the heating furnace from the graphite resistance to the MoSi2 material, the product cost could be greatly decreased.
    In this work, the sintering additives were choiced rare-earth oxides, such as Sm2O3, Gd2O3, Y2O3 and CaO. The calculated ratio of raw materials were vibration-milled for 6 h with ethanol. The slurry was dried in a vacuum oven about 50℃ for 5 h. Then the powder was ground and sieved through a 100-mesh sieve. Ceramic green bodies were uniaxially pressed at 40 MPa first, and then under cold isostatically pressed (CIP ped) at 98MPa. This green bodies were heated at 550℃ to remove organic binders. The green pellets were embedded in carbon powder on a BN board, and sintered at 1700℃ with N2 atmosphere for 1,3,5 h respectively. X-ray diffractometry (XRD) was used to identify the produced phases. SEM was used to observe the fractured surfaces of sintered bodies to discover the grain morphology. Thermal conductivity was measured by the laser flash equipment(Laser Flash LFA-447). Hardness of sintered specimen was measured by Vicker’s hardness meter.
    The results of study showed that three kinds of sintering additives was helpful to sintering up to 97% relative density. The relative density of sintered bodies and shrinkage under sintering was proportion to the Vicker’s hardness of sintering ceramic bodies. The representative result of TA3Y1C(composed by AlN powder with 3wt% of Y2O3 and 1wt% of CaO) was obtained the relative density of 99.4%(3.34g/cm3) and Vicker’s hardness 1310kg/mm2. The other result of TA1Y1C(composed by AlN powder with 1wt% of Y2O3 and 1wt% of CaO) which was sintered at 1700℃ for 3 h was measured the relative density of 98.6%(3.26 g/cm3), shrinkage of 17.3%, thermal conductivity of 147 W/mK and Vicker’s hardness of 1209 kg/mm2. These results were near the best conditions of sintered AlN ceramic bodies in published papers.

    摘要 I Abstract III 總目錄 V 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 氮化鋁特性 1 1.3 氮化鋁的製造 4 1.4 熱傳導機構 5 1.5 氮化鋁主要性質與用途 7 1.6 文獻回顧與整理 9 1.7 研究動機與目的 14 第二章 理論基礎 15 2.1 添加劑對氮化鋁燒結之影響 15 2.2 氧對氮化鋁影響之理論 17 2.3 液相燒結 20 第三章 實驗方法 23 3.1 實驗材料 23 3.2 實驗流程與步驟 24 3.2.1 燒結粉體之調配 24 3.2.2 起始粉末之混合 25 3.2.3 燒結粉體之壓錠 26 3.2.4 黏結劑之燒除 26 3.2.5 坯體之燒結 26 3.3 實驗設備 29 3.4 性質分析之儀器 30 3.4.1 粉體之分析 30 3.4.2 燒結體之分析 33 第四章 結果與討論 37 4.1 起始粉末之性質分析結果 37 4.1.1 雜質與粒徑分析 37 4.1.2 晶相分析 37 4.1.3 顯微結構分析 38 4.2 氮化鋁燒結試片之晶相分析結果與討論 40 4.3 各種添加劑對氮化鋁燒結密度及收縮率之影響 44 4.4 氮化鋁燒結體熱傳導係數之結果與討論 49 4.5 氮化鋁燒結體之機械性質 50 4.6 氮化鋁燒結體顯微結構分析 54 4.7 綜合討論 61 4.7.1 添加劑對氮化鋁燒結體性質之影響 61 4.7.2 氮化鋁燒結體綜合比較 64 第五章 結論與建議 67 5.1 結論 67 5.2 建議 69 第六章 參考文獻 70

    1.http://www.tsictec.com.tw/taiyen/tsicA1N/認識氮化鋁.htm
    2.G. A. Slack, “Non-metallic Crystals With High Thermal Conductivity,” J. Phys. Chem. Solids, 34, 321, ( 1973 ).
    3.S. Bloom, “Band Structures of GaN and AlN,” J. Phys. Chem. Solids, 32, 2027, ( 1971 ).
    4.N. Kuramoto, H. Taniguchi, and I. Aso, Am. Cera. Soc. Bull., 68, 883-887, (1989).
    5. E. Man, F. Yan, Am. Cera. Soc. Inc., 26, 19-54, (1994).
    6. L. M. Sheppard,“Aluminium Nitride:A Versatile but Challenging Materials,”Am. Cream. Soc. Bull., 69, 1801-1812, (1990).
    7.F. J. -M. Haussonne,“Review of the Synthesis Method for AlN,”Mat. Manu. Pro. Tech., 10, 717-718, (1995).
    8.Z. A. Munir,“Synthesis of High Temperature Materials by Self-Propagating Combustion Methods,”Cera. Bull., 67, 342-349, (1988).
    9. K. Komeya, N. Matsukaze, and T. Meguro,“Synthesis of AlN by Direct Nitridation of Al Alloys,”J. Cera. Soc. Jap., 101, 1286-1290, (1993).
    10.W. D. Kingery,“Introduction to Ceramic,”2nd Edition, John Wiley and Sons Inc.( 1976 ).
    11.黃昌偉,“陶瓷材料之熱性質分析,”精密陶瓷特性及檢測分析, P.10.1-10.54。
    12. 汪建民等,陶瓷技術手冊,經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版, 781-784, (1994年7月)。
    13. 林益正,“氮化鋁製程與性能之研究”,台灣科技大學碩士論文 94年畢業。
    14.K. Watari, K. Ishizaki, and T. Fujikawa, “Thermal Conduction Mechanism of Aluminium Nitride Ceramics,” J. Mater. Sci., 27, 2627-30, (1992).
    15.G. Gorzawski, M. Sternitzke, W. F. Müller, A. Bergerc and G. Mullerc, “Oxygen Enrichment at Inversion Domain Boundaries in Aluminium Nitride Influence on Thermal Conductivity,” J. Eur. Cera. Soc, 15, 95-99, (1995).
    16.K. Watari, Hae J. Hwang, Motohiro Toriyama, and Shuze Kanzaki “Low-Temperature Sintering and High Thermal Conductivity of YLiO2-Doped AlN Ceramics,” J. Am. Ceram. Soc, 79[7], 1979-81, (1996).
    17. Y. C. Liu, H. P. Zhou, Y. Wu, and L. Qiao, “Improving Thermal Conductivity of Aluminium Nitride Ceramics by Refining Microstructure,” Mater. Lett. 43, 114–117, (2000).
    18.Y. D. Yua, A. M. Hundereb, R. Hoiera, R. E. Dunin-Borkowskic, M. A. Einarsrudd, “Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics,” J. Eur. Cera. Soc, 22, 247-252, (2002).
    19. L. A. Qiao, H. P. Zhou, H. Xue, S. Wang,“Effect of Y2O3 on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics,”J. Eur. Cera. Soc, 23, 61-67, (2003).
    20. X. R. Xu, H. Zhuang, W. L. Li, S. Xu, B. L. Zhang, and X. Fu, “Improving thermal conductivity of Sm2O3-doped AlN ceramics by changing sintering conditions,”Materials Science and Engineering A342, 104-108, (2003).
    21.L. Qiaoa, H. P. Zhouaa, and R. L. Fubb , “Thermal conductivity of AlN ceramics sintered with CaF2 and YF3,” Ceramics International 29, 893–896, (2003).
    22.葉柏麟,“氮化鋁燒結之研究” 台灣科技大學碩士論文 92年畢業。
    23.楊昀達,“高緻密性AlN燒結體之製備及其熱傳導性質之研究”,成功大學碩士論文93年畢業。
    24.G. A. Slack, R. A. Tanzilli, R. O. Pohl , and J. W. Vandersande,“The Intrinsic Thermal Conductivity of AlN,”J. Phys. Chem. Soilds. 48, 641-664, (1987).
    25.K. Watari, M.C. Valecillos, M. E. Brito, M. Toriyama, and S. Kanzaki, “Processing and Thermal Conductivity of Aluminium Nitride Ceramics with Concurrent Addition of Y2O3, CaO and LiO2,”unpublished work.
    26.D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.), (1971).
    27. M. W. Chase, Jr., C. A. Davis, J. R. Dowwnney Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud,“JANAF Thermochemical Tables, Third Edition,”J. Phys. Chem. Ref. Data, suppl. No. 1, 14, (1985).
    28. Malt 2, Materials-Oriented Little Thermodynamic Database for Personal Computer, Nihon Netu Sokutei Galtukai, Tokyo, Japan.
    29K. Shinozaki, and A. Tsuge,“Development of High Thermal Conductivity AlN,”Bull. Ceram. Soc. Jpn, 21, 1130-35, (1986).
    30. A. F. Virkar, T. B. Jackson, and R. A. Cutler,“Thermodynamic and Kinetic Effect of Oxygen Removal on the Thermal Conductivity of Aluminium Nitride,”J. Am. Ceram. Soc., 72, 2031-42, (1989).
    31.K.Watari, M. Kawamoto, and K. Ishizaki,“Sintering Chemical Reactions to Increase Thermal Conductivity of Aluminium Nitride,” J. Mater. Sci., 26, 4724-32, (1991).
    32. K. Komeya, A. Tsuge, H.Inoue, and H. Ohta,“Effect of CaCO3 Addition on the Sintering of AlN,”J. Mater. Sci. Lett., 1, 325-26, (1982).
    33. N. Kuramoto, H. Taniguchi, Y. Numata, and I. Aso,“Sintering Process of Translucent AlN and Effect of Impurities on Thermal Conductivity of AlN,”Yogyo Kyokaishi, 93, 41-46, (1985).
    34. Y. Takeda, S. Ogihara, M. Ura, K. Nakamura, T. Asai, T. Ohkoshi, Y. Matsushita, and K. Maeda,“Sintered Aluminium Nitride and Semiconductor Device Using the Same,”U.S. Pat. No.4, 540 673, September 10, (1985).
    35. R. Metselaar, R. Reenis, M. Chen, H. Gorter and H. T. Hintzen “Surface characterization of chemically treated aluminium nitride powders,”J. Euro. Cera. Soc., 15, 1079-1085, (1995).
    36. Y. Zhang,“Effect of surfactant on depressing the hydrolysis process for aluminum nitride powder,”Mat. Reas. Bull., 37, 2393-2400, (2002).
    37.D. Hotza, O. Sahling, J. Mat. Sci., 30, 127-132, (1995).
    38.M. Alper, Chemical and Metallurgical Products Towanda, Pennsylvania, 12-29, (1995).
    39.E. M. Levin, C. R. Robbins and H. F. McMurolie, “Phase Diagrams for Ceramists,” The Am. Ceram. Soc., 4th Printing ( 1979 ).
    40.K. Watari, M. E. Brito, M. Yasuoka, and M. C. Valecikkos, J. Cera. Soc. Jap., 103, 891-900, (1995).
    41.W. J. Kim, D. K. Kim, and Chong Hee Kim,“Coating of Al2O3 Additive on AlN Powder and Its Effect on the Thermal Conductivity of AlN Ceramics,” Journal of Materials Synthesis and Processing, 3, 1, 37, ( 1995 ).
    42. E. K. Chang,“Aluminum nitride defect chemistry dependence on sintering atmosphere,”J. Mat. Sci. lett., 15, 1580-1581, (1996).
    43.N. Hiromi, W. Koji, H. Hiroyuki, U. Kazuyori,“Microstructural Chacterization of High Thermal Conductivity Aluminum Nitride Ceramic,”Am. Cera. Soc.,85, 3093-3095, (2002).
    44.M. Kasori, F. Ueno, A. Tsuge,“Effects of Transition-Metal Additions on the properties of AlN,”J. Am. Cera. Soc., 77, 1991-2000, (1994).
    45.W. D. Kingery, M. D. Marasimham, “Densification During Sinteringin Presence of a Liquid Phase”, J. Appl. Phys. 31[3], 307, (1959).
    46.R. M. German, “Liquid Phase Sintering” Plenum Press Inc. 6-8, (1985).
    47.A. L. Molisani, H. N. Yoshimura, H. Goldenstein, and K. Watari,“Effects of CaCO3 content on the densification of aluminum nitride,”J. Eur. Ceram. Soc. (2005).
    48.A. E. McHale, H. F. McMurdie, H. M. Ondik, in:Phase Equilibria Diagrams:Phase Diagrams for Ceramists (X), Acers, Westerville, 414, (1994).
    49.N. S. Raghavan, Pressureless sintering of aluminum nitride:effect of concentration of additives and sintering conditions on properties. Mater. Sci. Eng., A148, 307-317, (1991).
    50.D. Baranda, P. S., A. K. Knudsen, and E. Ruh,“Effect of CaO on the thermal conductivity of aluminum nitride,”J. Am. Ceram. Soc. 76(7), 1751-1760, (1993).
    51.Y. C. Liu, Y. Wu, and H. P. Zhou,“Microstructure of Low-Temperature Sintered AlN,”Mater. lett., 35, 232-235, (1998).
    52.J. Jarrige, J. P. Lecompte, J. Mullot, and G. Müller,“Effect of Oxygen on the Thermal Conductivity of Aluminum nitride Ceramics,”J. Eur. Ceram. Soc. 17, 1891-1895, (2005).
    53.M. Sternitzke, G. Müller,“EELS study of Oxygen Diffusion in Aluminum nitride,”J. Am. Ceram. Soc. 77, (1994).

    下載圖示 校內:2007-08-18公開
    校外:2007-08-18公開
    QR CODE