| 研究生: |
鄭鈞鴻 Cheng, Jun-Hung |
|---|---|
| 論文名稱: |
雷射輔助電漿化學氣相沉積之矽鍺薄膜研究 Investigation of Silicon–Germanium Films Deposited by Plasma-enhanced Chemical Vapor Deposition Using Laser Assistance |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 傅立葉轉換紅外線光譜 、二氧化碳雷射 、拉曼光譜 、電漿增強化學氣相沉積系統 、矽鍺薄膜 |
| 外文關鍵詞: | Hall measurement, XRD, TEM, FTIR, Raman, PECVD, SiGe film, CO2 laser |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來,矽化鍺薄膜由於可調變的能隙特性及和積體電路製程的高度相容性,成為一前途看好的材料,並已經廣泛應用在高速元件及光電子元件上。 目前已經有多個沉積矽化鍺薄膜在不同基板的技術,然而為了取得高效能的表現,矽化鍺薄膜必須沉積在高溫環境或者於沉積後給予薄膜高溫熱退火處理製程。為了避免掉高溫處理這個步驟,我們建構了一新式的沉積技術,在常溫下沉積矽化鍺薄膜於矽基板上並且沒有進行後續的熱退火處理。由於二氧化碳雷射能夠在反應時被當成一能量源誘發矽甲烷熱解成氣相,我們利用二氧化碳雷射,輔助傳統的電漿增強化學氣相沉積系統沉積矽化鍺薄膜在矽基板上。
在我們設計的系統中,ㄧ個外加的波長10.6微米二氧化碳雷射被引導照射進去標準的電漿增強化學氣相沉積系統的反應腔體中,並且運用波長為632.8奈米的可見光氦-氖雷射輔助二氧化碳雷射以大角度88o入射至腔體內的矽基板上,再同時以氬氣稀釋成4 %濃度的矽甲烷和純的鍺烷為氣體反應物來源沉積矽化鍺薄膜在矽基板上。
首先,為了研究有雷射和無雷射輔助沉積的矽化鍺薄膜表面粗糙度及薄膜深度各濃度含量,我們量測了原子力顯微鏡及歐傑電子光譜儀。除此之外,為了探究薄膜的結晶性及化學鍵結,我們量測了拉曼光譜及傅立葉轉換紅外線光譜。矽鍺薄膜的電特性方面則是量測了霍爾效應量測系統及四點探針量測系統。
根據量測結果,我們可以發現經過雷射輔助成長的矽鍺薄膜較沒有雷射輔助成長的薄膜表面平滑,且鍺元素含量在有雷射和無雷射輔助成長的薄膜中相差不多。而根據拉曼光譜的結果,我們可以研判經過雷射輔助成長的矽化鍺薄膜其結晶性比無雷射輔助成長薄膜來的佳,而另ㄧ方面,我們根據傅立葉轉換紅外線光譜的量測結果中震動模態的矽氫鍵結,推算矽化鍺薄膜內氫含量濃度多寡。計算結果顯示,在矽氫鍵結的振動模態其高斯分佈的模擬,沒有雷射輔助沉積的矽化鍺薄膜其氫含量濃度高於有雷射輔助沉積的矽化鍺薄膜含量。根據霍爾效應量測結果也可以發現沒有雷射輔助成長的矽鍺薄膜載子漂移率較有雷射輔助成長的薄膜低了許多。因此本研究成功以二氧化碳雷射輔助電漿化學氣相沉積系統於常溫下沉積出含氫量低,使矽鍺鍵結增強的高品質矽化鍺薄膜。
Recently, silicon–germanium (SiGe) film has been become a promising material in applications of high-speed devices and optoelectronic devices, due to its tunable bandgap and compatibility with integrated circuit process. Several techniques have been used to deposit SiGe film on various substrates. To obtain high performances, however, the deposited SiGe films must be deposited or annealed at elevated temperature. To avoid the undesirable treatment in high temperature, we proposed a new technique to deposit SiGe films on Si substrate at room temperature without post-annealing treatments. Since CO2 laser can be used as an energized source to induce gas-phase pyrolysis of SiH4 in a reactor, we used CO2 laser to assist the deposition of SiGe films on Si substrate in conventional plasma-enhanced chemical deposition system (PECVD).
In our system, CO2 laser with a wavelength of 10.6 μm was collimated into the chamber of the conventional PECVD system. To assist the alignment of CO2 laser beam with a incident angle of 88o to the Si substrate, a visible He-Ne laser (632.8 nm) was used. To deposit SiGe films on Si substrate without heating, argon-diluted SiH4 (4%) and pure GeH4 were used as reactant gas sources.
Initially, the surface uniformity and depth homogeneity of the SiGe films deposited with and without CO2 laser assistance were conducted from atomic force microscopy and Auger electron spectroscopy measurements. In addition, the crystalline structure and chemical bonds of these films were analyzed using Raman spectroscopy and Fourier transformation infrared spectrometry (FTIR). The electrical properties of SiGe films are measured by Hall measurement and four point probe measurement.
According to the measured result, it can be seen that the surface roughness of the SiGe film grown with CO2 laser assistance is much better than that without CO2 laser assistance. Besides, the atomic concentration of Ge between a-SiGe:H thin films with and without CO2 laser assistance is similar in the same order. According the Raman spectrum, it can be deduced that the Si-Ge films prepared from LAPECVD have better crystallization. Furthermore, hydrogen concentration (NH) was estimated from Si-H rocking mode bond (Si-H(r)) of SiGe film observed from the FTIR spectrum. Hydrogen concentration derived from Si-H(r) mode in the SiGe films deposited without laser assistance is higher than that deposited with laser assistance. Because the CO2 laser beam could assist the pyrolytic decomposition of SiH4 gas and enhance the formation of Si-Ge bonds to induce less hydrogen. According to the Hall measurement result, the Hall mobility of SiGe films grown without laser assistance is much lower than that of SiGe films prepared with CO2 laser assistance. As a result, we concluded that SiGe films possessed superior Si-Ge bond and lower hydrogen concentration can be achieved by PECVD system using CO2 laser assistance.
[1] S. A. St. Onge, D. L. Harame, J. S. Dunn, S. Subbanna, D. C. Ahlgren, G. Freeman, B. Jagannathan, J. Jeng, K. Schonenberg, K. Stein, R. Groves, D. Coolbaugh, N. Feilchenfeld, P. Geiss, M. Gordon, P. Gray, D. Hershberger, S. Kilpatrick, R. Johnson, A. Joseph, L. Lanzerotti, J. Malinowski, B. Orner, and M. Zierak, “A 0.24 μm SiGe BiCMOS Mixed-Signal RF Production Technology Featuring a 47-GHz fT HBT and 0.18 μm Leff CMOS,” Proceedings of the IEEE Bipolar / BiCMOS Circuits and Technology Meeting (BCTM), pp. 117-120 (1999).
[2] C. M. Snowden, “The Rise of Compound Semiconductors - from Radio to Lightwaves,” IEE Review, pp. 15-20 (2001)
[3] J. C. Bean, “Silicon-Based Semiconductor Heterostructure Column IV Bandgap Engineering,” Proceedings of the IEEE, Vol. 80 (4), pp. 571-587 (1992)
[4] H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter, and H. G. Grimmeiss, “Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics,” Semicond. Sci. Technol., Vol. 7, pp. 1127-1148 (1992)
[5] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen, and S. Y. Huang, “An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring,” IEEE Trans. on Electron Devices, Vol. 47(5), pp. 939-943 (2000)
[6] J. Yang, A. Banerjee, and S. Guha, "An Amorphous Silicon Alloy Triply-Junction Solar Cell with 14.6% Initial and 13.0% Stable Efficiencies", Proc. Materials Research Society: Amorphous and Microcrystalline Silicon Technology, Vol. 467, pp. 693-697 (1997).
[7] A. Terakawa, M. Shima, T. Kinoshita, M. Isomura, M. Tanaka, S. Kiyama, S. Tsuda, and H. Matsunami, “Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor,” Proceedings of the 14th EU Photovoltaic Solar Energy Conference, Barcelona, pp. 2359-2565 (1997)
[8] D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, J. Y. C. Sun, B. S. Meyerson, and T. Tice, “Si/SiGe epitaxial-base transistors-Part I: materials, physics, and circuits,” IEEE Trans. Electron Devices, Vol. 42(3), pp. 455-468 (1995)
[9] D. L. Harame, J. H. Comfort, J. D. Cressler, F. Crabbé, J. Y. C. Sun, B. S. Meyerson, and T. Tice, “Si/SiGe Epitaxial-Base Transistors- Part II: Process Integration and Analog Applications,” IEEE Trans. Electron Devices, Vol. 42(3), pp. 469-482 (1995).
[10] J.D. Cressler, "Re-engineering silicon: SiGe heterojunction bipolar technology," IEEE Spectrum 32, Vol. 3, pp. 49-55 (1995)
[11] L. S. Vempati, J. D. Cressler, J. A. Babcock, R. C. Jaeger, and D. L. Harame, “Low-Frequency Noise in UHV/CVD Epitaxial Si and SiGe Bipolar Transistors,” IEEE J. of Solid-State Circuits, Vol. 31, pp. 1458-1467 (1996)
[12] B. S. Meyerson, "Silicon:Germanium-Based Mixed-Signal Technology for Optimization of Wired and Wireless Telecommunications," IBM J. Res. & Develop., Vol. 44(3), pp. 391-407 (2000).
[13] R. A. Metzger, “Silicon germanium as a commercial technology,” Compound Semiconductor, Magazine March Cover story, pp. 36-42 (1999).
[14] C. A. King, M. R. Frei, M. Mastrapasqua, K. K. Ng, Y. O. Kim, R. W. Johnson, S. Moinian, S. Martin, H.-I. Cong, F. P. Klemens, R. Tang, D. Nguyen, T.-I. Hsu, T. Campbell, S. J. Molloy, L. B. Fritzinger, T. G. Ivanov, K. K. Bourdelle, C. Lee, Y.-F. Chyan, M. S. Carroll, and C. W. Leung, “Very Low Cost Graded SiGe Base Bipolar Transistors for a High Performance Modular BiCMOS Process”, Electron Devices Meeting, IEDM Technical Digest. International, pp. 565-568 (1999).
[15] K. D. Mackenzie, J. R. Eggert, D. J. Leopold, Y. M. Li, S. Lin, and William Paul, “Structural, electrical, and optical properties of a-Si1-xGex:H and an inferred electronic band structure,” Phys. Rev. B, Vol. 31, pp. 2198–2212 (1985)
[16] K. D. Mackenzie, J. H. Burnett, J. R. Eggert, Y. M. Li, and W. Paul, “Comparison of the structural, electrical, and optical properties of amorphous silicon-germanium alloys produced from hydrides and fluorides,” Phys. Rev. B, Vol. 38, pp. 6120-6136 (1988).
[17] P. B. Kirby and W. Paul, “Transient-photocurrent studies in a-Si:H,” Phys. Rev. B ,Vol. 29, pp. 826–835 (1984)
[18] R. L. Weisfield, “Space-charge-limited currents: Refinements in analysis and applications to a-Si1–xGexH alloys,” J. Appl. Phys, Vol. 54(11), pp. 6401-6416 (1983)
[19] M. Shima, A. Terakawa, M. Isomura, H. Haku, M.Tanaka, K. Wakisaka, S. Kiyama, and S. Tsuda, “Mobility of oligomeric thin film transistors prepared at rapid growth rates by pulsed laser deposition,” J. Non-Crystal Solids, Vol. 442, pp. 227–230 (1998).
[20] M. Meaudre, R. Meaudre, S. Vignoli , and B. Canut, “Deep defects and their electron-capture cross sections in polymorphous silicon-germanium thin films,” J. Appl. Phys, Vol. 98, 033531(7 pages) (2005)
[21] M. Gal, J. M. Viner, P. C. Taylor, and R. D. Wieting, “Existence of a universal low-energy tail in the photoluminescence of a-Si1-xGex:H alloys,” Phys. Rev. B, Vol. 31, pp. 4060–4062 (1985)
[22] M. B. Diaz, J.P. Kleider, P. St’ahel, P. Sladek, and P. R. Cabarrocas, “High temperature Gate control of quantum well spin memory,” Proceedings of 14th European Photovoltaic Solar Energy Conference, Barcelona, pp. 609-612 (1997).
[23] T. F. Deutsch, “Infrared laser photochemistry of silane,” J. Chem. Phys., Vol. 70(3), pp. 1187-1192 (1979)
[24] W. B. Steward, and H. H. Nielsen, “The Infrared Absorption Spectrum of Silane,” Phys. Rev., Vol. 47, pp. 828-832 (1935)
[25] W. B. Steward and H. H. Nielsen,” The Infrared Absorption Spectrum of Germane,” Phys. Rev., Vol. 48, pp. 861-864 (1935)
[26] E. Kasper, and K. Lyutovich, “Effective masses of electrons and holes in SiGe,” Properties of SiGe & SiGe:C, IEE, pp. 75-80 (2000).
[27] B. G. Streetman and S. Banerjee, “Solid state electronic devices,” Prentice-Hall series in solid state physical electronics, 6th, Upper Saddle River, NJ: Prentice Hall (2006).
[28] F. Schäffler, “High-mobility Si and Ge structures,” Semicond. Sci. Technol., Vol. 12, pp. 1515-1549 (1997).
[29] C.T. Sah, “Evolution of the MOS transistor-from conception to VLSI,” Proceedings of the IEEE, Vol. 76, pp. 1280-1326 (1988).
[30] F. K. LeGoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, “Mechanism and conditions for anomalous strain relaxation in graded thin films and superlattices,” J. Appl. Phys, Vol. 71(9), pp. 4230-4243 (1992)
[31] M. S. Hybertsen and S. G. Louie, “Nonlocal-density functional approximation for exchange and correlation in semiconductors,” Phys. Rev. B, Vol. 30, pp. 5777–5790 (1984)
[32] A. Sadek, K. Ismail, M. A. Armstrong, D. A. Antoniadis, Fellow, ZEEE, and F. Stern, “Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors,” IEEE Transactions on Electron Devices, Vol. 43(8), pp.1224-1232, (1996).
[33] J. Tersoff, “Schottky barriers and semiconductor band structures,” Phys. Rev. B, Vol. 32, pp. 6968–6971 (1985)
[34] G. B. Bachelet and N. E. Christensen, “Relativistic and core-relaxation effects on the energy bands of gallium arsenide and germanium,” Phys. Rev. B, Vol. 31, pp. 879–887 (1985)
[35] C. G. Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, Vol. 34, pp. 5621-5634 (1986).
[36] P. Ashburn, “SiGe Heterojunction Bipolar Transistors,” John Wiley and Sons, Inc. (2003).
[37] H. J. Herzog, T. Hackbarth, G. Hock, M. Zeuner, and U. Konig, “SiGe-based FETs: buffer issues and device results,” Thin Solid Films, Vol. 380(1-2), pp. 36-41 (2000).
[38] P. K. Swain, S. Madapur, and D. Misra, “Plasma process-induced band-gap modifications of a strained SiGe heterostructure,” Appl. Phys. Lett., Vol. 74 (21), pp. 3173-3175 (1999)
[39] P. K. Swain, D. Misra, and P. E. Thompson, “Effect of dry etching and subsequent annealing of Si/SiGe/Si heterostructure,” J. Appl. Phys., Vol. 79 (8), pp. 4402-4406 (1996)
[40] Y. Kim, D. Berlin, and A. Samoilov, “Fabrication of epitaxial SiGe optical waveguide structures,” Appl. Surf. Sci., Vol. 224, pp. 175-178 (2004)
[41] J. C. G. de Sande, A. Rodrıguez, and T. Rodrı´gueza, “Spectroscopic ellipsometry determination of the refractive index of strained Si1-xGex layers in the near-infrared wavelength range (0.9–1.7 mm),” Appl. Phys. Lett., Vol. 67(23), pp. 3402-3404 (1995)
[42] R. A. Soref, F. Namavar, and J.P. Lorenzo, "Optical waveguiding in a single-crystal layer of germanium silicon grown on silicon," Opt. Lett. Vol. 15, pp. 270-272 (1990)
[43] C.J. Vineis, M. Erdtmann, and C.W. Leitz, “Optimized measurement of strained Si thickness and SiGe virtual substrate composition by spectroscopic ellipsometry,” Thin Solid Films, Vol. 513(1-2) , pp. 78-83 (2006)
[44] S. Minomura, K. Tsuji, M. Wakagi, T. Ishidate, K. Inoue and M. Shibuya, “Structural studies of crystalline and amorphous Si-Ge alloys using EXAFS and Raman scattering,” J. Non-Cryst. Solids, Vol. 59-60, pp. 541-544 (1983)
[45] S. H, K. Chen, J. Shi, X. Huang, J. Xu, G. Ganguly, and A. Matsuda, “Very High Hydrogen Dilution Induced Novel Phenomena of Electronic Transport Properties in Hydrogenated Microcrystalline Silicon-Germanium Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., Vol. 40, pp. 40-43 (2001)
[46] M. Shima, A. Terakawa, M. Isomura, M. Tanaka, S. Kiyama, and S. Tsuda, “Effects of high hydrogen dilution at low temperature on the film properties of hydrogenated amorphous silicon germanium,” Appl. Phys. Lett., Vol. 71(1), pp. 84-86 (1997)
[47] E. Martin, P. Martin, J. Olivares, A. Rodriguez, J. Sangrador, J. Jimenez, and T. Rodriguez, “Metastable crystalline state induced in amorphous SiGe layers under cw visible laser illumination,” Thin Solid Films, Vol. 383(1-2) , pp. 227-229 (2001)
[48] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, ” Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B, Vol. 45, pp. 13367–13377 (1992)
[49] M. Cardona, “Vibrational Spectra of Hydrogen in Silicon and Germanium,” Phys. Status Solidi B, Vol. 118(2), pp. 463-481 (1983).
[50] N. H. Nickel, W. Beyer: Hydrogen in Semiconductors II, (Academic Press, San Diego, 1999) Semiconductors and Semimetals, Vol. 61, p. 165.
[51] M. A. Ghazala, W. Beyer, and H. Wagner, “Long-term stability of hydrogenated amorphous germanium measured by infrared absorption,” J. Appl. Phys., Vol. 70(8), pp. 4540-4543 (1991)
[52] A. Terakawa and H. Matsunami, “Composition Dependence of Inhomogeneous Hydrogen Bonding Structures in a-SiGe:H,” Jpn. J. Appl. Phys., Vol. 38, pp. 6207-6212 (1999)
[53] K. M. McNamara, B. E. Williams, K. K. Gleason and B. E. Scruggs, “Identification of defects and impurities in chemical-vapor deposited diamond through infrared,” J. Appl. Phys., Vol. 76(4), pp. 2466-2472 (1994)
[54] P. Wickboldt, D. Pang, W. Paul, J. H. Chen, F Zhong, C. C. Chen, J. D. Cohen, and D. L. Williamson, “High performance glow discharge a-Si1-xGex:H of large x,” J. Appl. Phys., Vol. 81(9), pp. 6252-6267 (1997)
[55] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon,” Phys. Status Solidi B, Vol. 100(1), pp. 43-56 (1980)
[56] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, ” Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B, Vol. 45, pp. 13367–13377 (1992)
[57] C. J. Fang, K. J. Gruntz, L. Ley and M. Cardona, F. J. Demond, G. Müller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques,” J. Non-Cryst. Solids, Vol. 35-36, Part 1, pp. 255-260 (1980)
[58] A. A. Valladares, A. Valladares, and M. A. McNelis, “The electronic structure of a-SiGe alloys: a cluster simulation,” J. Non-Cryst. Solids, Vol. 226(1-2) , pp. 67-75 (1998)
[59] B. P. Nelson, Y. Xu, J. D. Webb, A. Mason, R. C. Reedy, L. M. Gedvilas, and W. A. Lanford, “Techniques for measuring the composition of hydrogenated amorphous silicon–germanium alloys,” J. Non-Cryst. Solids, Vol. 266-269, Part 2(1), pp. 680-684 (2000)
[60] D. Metzger, K. Hesch, and P. Hess, “Process characterization and mechanism for laser-induced chemical vapor deposition of a-Si:H from SiH4,” Appl. Phys. A: Materials Science & Processing, Vol. 45(4), pp. 345-353 (1988)
[61] H. S. Tsai, G. J. Jaw, S. H. Chang, C. C. Cheng, C. T. Lee, and H. P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film,” Surf. Coat. Technol., Vol. 132 , pp. 158-162 (2000)
[62] W.A.P. Classen, “p-Type SiGe transistors with low gate leakage using SiN gate dielectric,” Plasm. Chem. Plasm. Proc., Vol. 7(1), pp. 109-111 (1987)
[63] S. E. Alexandrov and A. Y. Kovalgin, “Remote plasma-enhanced CVD of silicon nitride films: effects of diluting nitrogen with argon. Part I: effect on nitrogen plasma parameters studied by emission spectroscopy,” Adv. Mater. Opt. Electron., Vol. 8(1) , pp. 13-22 (1998)
[64] E. V. Jelenkovic, and K.Y. Tong, “Effect of SiGe thickness on crystallisation and electrical properties of sputtered silicon film in Si/SiGe/insulator structure,” Appl. Surf. Sci., Vol. 135, pp. 143-149 (1998)
[65] L. k. Teh, W. K. Choi, L. K. Bera, and W. k. Chim, “Structural characterisation of polycrystalline SiGe thin film,” Solid-State Electron., Vol. 45, pp. 1963-1996 (2001)
[66] K.Shiota, D. Inoue, K. Minami, M. Yamamoto, and J. Hanna, “High crystallinity poly-SiGe at 450oC on amorphous substrates,” Jpn. J. Appl. Phys., Vol. 36, pp. L989-L992 (1997)
[67] F. Edelman, M. Stoker, P. Werne, and R. Butz, “Structure and Transport Properties of Ga-Doped Semi- and Polycrystalline Si1-xGex Films,” 15th International Conference on Thermoelectrics, pp. 474-478(1996)
[68] S. Hayashi, M. Fujii, T. Takanabe, and K. Yamamoto, “Implications of broad Raman spectra of sputtered SiGe alloy films,” Jpn. J. Appl. Phys., Vol. 27(7), pp. L1165-L1167 (1988)
[69] C. K. Maiti, S. K. Samanta, S. Chatterjee, G. K. Dalapati, and L. K. Bera,” Gate dielectrics on strained-Si/SiGe heterolayers,” Solid-State Electron., Vol.48, pp.1369-1389 (2004)
[70] D. S. Bang, M. Cao, A. Wang, K. C. Saraswat, and T. J. King, “Resistivity of boron and phosphorus doped polycrystalline Si1-xGex films,” Appl. Phys. Lett., Vol. 66(2), pp. 195-197 (1995)
[71] H. C. Lin, T. G. Jung, H. Y. Lin, C. Y. Chang, T. F. Lei , P. J. Wang, R. C. Deng, J. Lin, and C. Y. Chao, “Deposition and device application of in situ boron-doped polycrystalline SiGe films grown at low temperatures,” J. Appl. Phys., Vol. 74(9), pp. 5395-5401 (1993)
[72] C. B. Vining, W. Laskow, J. O. Hanson, R. R. V. Beck, and P. D. Gorsuch, “Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys,” J. Appl. Phys., Vol. 69(8), pp. 4333-4340 (1991)