簡易檢索 / 詳目顯示

研究生: 范乃心
Fan, Nai-Shin
論文名稱: 無規則線圈-折板之聚賴胺酸嵌段聚蘇胺酸雙嵌段共聚胺酸水膠形成性質之探討
Hydrogelation of Coil-Sheet Poly(L-Lysine)-block-Poly(L-Threonine) Block Copolypeptides
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 嵌段聚胺基酸水膠二級結構奈米纖維
外文關鍵詞: block polypeptide, coil-sheet conformation, hydrogel, self-assembly
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成帶有正電荷之親水性雙嵌段聚胺基酸高分子,聚賴胺酸嵌段聚蘇胺酸(PLL-b-PLT)並且將其製備成水膠。利用聚賴胺酸具有無規則線圈、聚蘇胺酸具有折板之二級結構,探討聚胺基酸的比例對氫鍵作用力、水合力以及靜電排斥力的影響來研究形成水膠的形成機制;另外,藉由各種實驗分析PLL-b-PLT嵌段聚胺基酸分子間的排列。本實驗利用一級胺作為起始劑,對第一段胺基酸進行開環聚合,再由第一段末端的親核基對第二段胺基酸開環聚合,得到9種不同比例的嵌段聚胺基酸。針對各個比例的嵌段聚胺基酸進行成膠濃度測試,再利用IR以及CD光譜分析其二級結構,發現β-sheet結構的增加有助於臨界成膠濃度的降低,並且由實驗數據推論PLL鏈段上的正電荷亦會影響成膠濃度,代表水膠系統的成膠作用力由氫鍵作用力、水合力以及靜電排斥力達到平衡;另外,藉由SAXS以及TEM等儀器的分析發現在低濃度的高分子水溶液中,PLL-b-PLT自組裝形成奈米纖維(nanofibril)結構,並分析其mesh size,由XRD分析高分子鏈段排列,再利用SEM觀察水膠樣貌,推測水膠形成是藉由纖維纏繞(entanglement)而成的網絡。此外,利用流變儀測試水膠的強度、水膠回復情形,以及在不同溫度下的強度變化,再利用不同溫度的CD光譜交互比對,發現溫度的升高會造成β-sheet結構的增加以及水合能力的降低,以及水膠強度的增加。

    In this study, we reported the hydrogel preparation by using coil-sheet diblock copolypeptide poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) with different block ratios. FTIR and circular dichroism (CD) analyses confirmed that PLL and PLT segments adopted random coil and β-sheet conformations, respectively. The gelation of PLL-b-PLT was dictated the balance between hydrogen-bonding interaction, hydration, and charge repulsion. The formation of β-sheet conformation by PLT segments through hydrogen bond interactions resulted in the self-assembly of the PLL-b-PLT by XRD analyses. SAXS and TEM analyses revealed that the PLL-b-PLT formed fibrilar nanoassemblies. The mechanical properties of these PLL-b-PLT hydrogels were found to depend on polypeptides chain length and block ratio.

    摘要 I Extended Abstract Ⅱ 誌謝 XII 目錄 I 表目錄 IV 圖目錄 V 第一章 緒論 1 1.1 前言 1 1.1.1 生醫材料 1 1.1.2 聚胺基酸與蛋白質 2 1.2 研究動機 3 第二章 文獻回顧 4 2.1聚胺基酸 4 2.1.1胺基酸 4 2.1.2蛋白質之結構 5 2.1.3胺基酸之聚合 8 2.2水膠 11 2.2.1 水膠發展歷史 11 2.2.2 智慧型水膠 14 2.2.3 聚胺基酸水膠形成機制 16 2.24 水膠自組裝模式 18 第三章 實驗方法與步驟 20 3.1 實驗藥品 20 3.2 實驗儀器與原理 22 3.2.1凝膠滲透層析儀(GPC) 22 3.2.2 液態核磁共振儀 22 3.2.3 基質輔助雷射脫附游離飛行時間質譜儀 22 3.2.4 傅立葉轉換紅外線光譜儀(FT-IR) 24 3.2.5 圓二色光譜儀 25 3.2.6 小角度X光散射儀 27 3.2.7 流變儀 28 3.2.8 掃描式電子顯微鏡(SEM) 28 3.2.9 穿透式電子顯微鏡(TEM) 29 3.2.10 X光繞射儀 (XRD) 29 3.3 聚胺基酸合成 30 3.3.1 開環聚合法N-carboxylanhydrides (NCAs) 30 3.3.2 乾燥溶劑 30 3.3.3 Z-L-lysine NCAs製備 31 3.3.4 N-Boc-O-benzyl-L-threonine NCAs之製備69 32 3.3.5 利用一級胺作為起始劑對NCAs開環合成聚胺基酸 33 3.3.6 去除聚胺基酸保護基 33 3.4 水膠之性質測試 34 3.4.1 以嵌段聚胺基酸製備水膠 34 3.4.2 水膠之流變性質 34 3.4.3 嵌段聚胺基酸二級結構之鑑定 35 3.4.4 圓二色光譜鑑定嵌段聚胺基酸之二級結構 35 3.4.5 嵌段聚胺基酸水膠之堆疊 36 3.4.6 嵌段聚胺基酸的結晶性質 36 第四章 結果與討論 37 4.1嵌段聚胺基酸之合成分析 37 4.1.1嵌段聚胺基酸之聚合度 38 4.1.2嵌段聚胺基酸之分子量 50 4.2嵌段聚胺基酸水膠之形成 55 4.3嵌段聚胺基酸水膠之結構 57 4.3.1 嵌段聚胺基酸之二級結構 58 4.3.2 嵌段聚胺基酸之自組裝 63 4.4嵌段聚胺基酸水膠之物理性質 76 4.4.1嵌段聚胺基酸水膠之流變性質 76 4.4.2溫度對水膠之影響 79 第五章 結論 83 參考文獻 85

    (1) Noller, H. F. The parable of the caveman and the ferrari: Protein synthesis and the RNA world. Philosophical Transactions of the Royal Society B: Biological Sciences 2017, 372.
    (2) Nelson, D. L.; Nelson, D. L.; Lehninger, A. L.; Cox, M. M.: Lehninger principles of biochemistry; W.H. Freeman: New York, 2008.
    (3) Creighton, T. E.: Proteins: structures and molecular properties; Macmillan, 1993.
    (4) Meyers, R. A.: Molecular biology and biotechnology: a comprehensive desk reference; John Wiley & Sons, 1995.
    (5) Schulz, G. E.; Schirmer, R. H.: Patterns of folding and association of polypeptide chains. In Principles of Protein Structure; Springer, 1979; pp 66-107.
    (6) Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983, 22, 2577-2637.
    (7) Carlsen, A.; Lecommandoux, S. Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14, 329-339.
    (8) Branden, C. I.: Introduction to protein structure; Garland Science, 1999.
    (9) Merrifield, R. Solid phase peptide synthesis. II. The synthesis of bradykinin. Journal of the American Chemical Society 1964, 86, 304-305.
    (10) Cheng, J.; Deming, T. J.: Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. In Peptide-based materials; Springer, 2011; pp 1-26.
    (11) Leuchs, H. Ueber die Glycin‐carbonsäure. European Journal of Inorganic Chemistry 1906, 39, 857-861.
    (12) Kricheldorf, H. R. Polypeptides and 100 Years of Chemistry of α‐Amino Acid N‐Carboxyanhydrides. Angewandte Chemie International Edition 2006, 45, 5752-5784.
    (13) Huesmann, D.; Birke, A.; Klinker, K.; Türk, S.; Räder, H. J.; Barz, M. Revisiting secondary structures in NCA polymerization: Influences on the analysis of protected polylysines. Macromolecules 2014, 47, 928-936.
    (14) Wong, S.; Kwon, Y. J. Facile synthesis of high‐molecular‐weight acid‐labile polypeptides using urethane derivatives. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53, 280-286.
    (15) Hehir, S.; Cameron, N. R. Recent advances in drug delivery systems based on polypeptides prepared from N‐carboxyanhydrides. Polymer International 2014, 63, 943-954.
    (16) Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chemical reviews 2009, 109, 5528-5578.
    (17) He, X.; Fan, J.; Wooley, K. L. Stimuli‐Triggered Sol–Gel Transitions of Polypeptides Derived from α‐Amino Acid N‐Carboxyanhydride (NCA) Polymerizations. Chemistry–An Asian Journal 2015.
    (18) Wei, Z.; Zhu, S.; Zhao, H. Brush macromolecules with thermo-sensitive coil backbones and pendant polypeptide side chains: synthesis, self-assembly and functionalization. Polymer Chemistry 2015, 6, 1316-1324.
    (19) Ulkoski, D.; Meister, A.; Busse, K.; Kressler, J.; Scholz, C. Synthesis and structure formation of block copolymers of poly (ethylene glycol) with homopolymers and copolymers of l-glutamic acid γ-benzyl ester and l-leucine in water. Colloid and Polymer Science 2015, 293, 2147-2155.
    (20) Wibowo, S. H.; Sulistio, A.; Wong, E. H.; Blencowe, A.; Qiao, G. G. Functional and Well‐Defined β‐Sheet‐Assembled Porous Spherical Shells by Surface‐Guided Peptide Formation. Advanced Functional Materials 2015, 25, 3147-3156.
    (21) Lu, Y.; Ngo Ndjock Mbong, G.; Liu, P.; Chan, C.; Cai, Z.; Weinrich, D.; Boyle, A. J.; Reilly, R. M.; Winnik, M. A. Synthesis of polyglutamide-based metal-chelating polymers and their site-specific conjugation to trastuzumab for auger electron radioimmunotherapy. Biomacromolecules 2014, 15, 2027-2037.
    (22) Daly, W. H.; Poché, D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters 1988, 29, 5859-5862.
    (23) Poché, D. S.; Moore, M. J.; Bowles, J. L. An Unconventional Method for Purifying the N-carboxyanhydride Derivatives of γ-alkyl-L-glutamates. Synthetic Communications 1999, 29, 843-854.
    (24) Deming, T. J. Living polymerization of α-amino acid-N-carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38, 3011-3018.
    (25) Chen, C.; Wu, D.; Fu, W.; Li, Z. Peptide hydrogels assembled from nonionic alkyl-polypeptide amphiphiles prepared by ring-opening polymerization. Biomacromolecules 2013, 14, 2494-2498.
    (26) Peppas, N. A.; Khare, A. R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced Drug Delivery Reviews 1993, 11, 1-35.
    (27) Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release 2014, 190, 254-273.
    (28) Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002, 417, 424-428.
    (29) Roorda, W. E.; BoddÉ, H. E.; de Boer, A. G.; Junginger, H. E. Synthetic hydrogels as drug delivery systems. Pharmaceutisch Weekblad 1986, 8, 165-189.
    (30) Miyata, T.; Asami N Fau - Uragami, T.; Uragami, T. A reversibly antigen-responsive hydrogel.
    (31) Wichterle, O.; Lim, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117-118.
    (32) Kopeĉek, J. Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. Journal of Polymer Science, Part A: Polymer Chemistry 2009, 47, 5929-5946.
    (33) Choi, S. W.; Choi, S. Y.; Jeong, B.; Kim, S. W.; Lee, D. S. Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. II. Journal of Polymer Science Part A Polymer Chemistry 1999, 37, 2207-2218.
    (34) Jeong, B.; Lee, D. S.; Shon, J. I.; Bae, Y. H.; Kim, S. W. Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37, 751-760.
    (35) Slager, J.; Domb, A. J. Biopolymer stereocomplexes. Advanced drug delivery reviews 2003, 55, 549-583.
    (36) Chujo, Y.; Sada, K.; Saegusa, T. Cobalt (II) bipyridyl-branched polyoxazoline comolex as a thermally and redox reversible hydrogel. Macromolecules 1993, 26, 6320-6323.
    (37) Chujo, Y.; Sada, K.; Saegusa, T. Iron (II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules 1993, 26, 6315-6319.
    (38) Petka, W. A.; Harden, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 1998, 281, 389-392.
    (39) Wang, C.; Stewart, R. J.; KopeČek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 1999, 397, 417-420.
    (40) Jing, P.; Rudra, J. S.; Herr, A. B.; Collier, J. H. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 2008, 9, 2438.
    (41) Zhang, X.-Z.; Wu, D.-Q.; Chu, C.-C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 2004, 25, 3793-3805.
    (42) Salgado-Rodrıguez, R.; Licea-Claverıe, A.; Arndt, K. Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. European polymer journal 2004, 40, 1931-1946.
    (43) Ishihara, K.; Hamada, N.; Kato, S.; Shinohara, I. Photoinduced swelling control of amphiphilic azoaromatic polymer membrane. Journal of Polymer Science Part A: Polymer Chemistry 1984, 22, 121-128.
    (44) Yu, X.; Chen, L.; Zhang, M.; Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chemical Society Reviews 2014, 43, 5346-5371.
    (45) Cravotto, G.; Cintas, P. Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chemical Society Reviews 2009, 38, 2684-2697.
    (46) Fan, J.; Zou, J.; He, X.; Zhang, F.; Zhang, S.; Raymond, J. E.; Wooley, K. L. Tunable mechano-responsive organogels by ring-opening copolymerizations of N-carboxyanhydrides. Chemical science 2014, 5, 141-150.
    (47) Ostroha, J.; Pong, M.; Lowman, A.; Dan, N. Controlling the collapse/swelling transition in charged hydrogels. Biomaterials 2004, 25, 4345-4353.
    (48) Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules. Chemical reviews 2004, 104, 1201-1218.
    (49) Adams, D. J.; Topham, P. D. Peptide conjugate hydrogelators. Soft Matter 2010, 6, 3707-3721.
    (50) He, X.; Fan, J.; Wooley, K. L. A.-O. h. o. o. X. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from alpha-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.
    (51) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
    (52) Zou, J.; Zhang, F.; Chen, Y.; Raymond, J. E.; Zhang, S.; Fan, J.; Zhu, J.; Li, A.; Seetho, K.; He, X. Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into β-sheet-driven polymeric ribbons. Soft Matter 2013, 9, 5951-5958.
    (53) Park, M. H.; Joo, M. K.; Choi, B. G.; Jeong, B. Biodegradable thermogels. Accounts of chemical research 2011, 45, 424-433.
    (54) Huang, J.; Hastings, C. L.; Duffy, G. P.; Kelly, H. M.; Raeburn, J.; Adams, D. J.; Heise, A. Supramolecular hydrogels with reverse thermal gelation properties from (oligo) tyrosine containing block copolymers. Biomacromolecules 2012, 14, 200-206.
    (55) Hamley, I. W.; Daniel, C.; Mingvanish, W.; Mai, S.-M.; Booth, C.; Messe, L.; Ryan, A. J. From hard spheres to soft spheres: the effect of copolymer composition on the structure of micellar cubic phases formed by diblock copolymers in aqueous solution. Langmuir 2000, 16, 2508-2514.
    (56) Chen, Y.; Pang, X. H.; Dong, C. M. Dual Stimuli‐Responsive Supramolecular Polypeptide‐Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host–Guest Chemistry. Advanced Functional Materials 2010, 20, 579-586.
    (57) Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nature communications 2011, 2, 511.
    (58) He, X.; Fan, J.; Zhang, F.; Li, R.; Pollack, K. A.; Raymond, J. E.; Zou, J.; Wooley, K. L. Multi-responsive hydrogels derived from the self-assembly of tethered allyl-functionalized racemic oligopeptides. Journal of Materials Chemistry B 2014, 2, 8123-8130.
    (59) Moon, H. J.; Choi, B. G.; Park, M. H.; Joo, M. K.; Jeong, B. Enzymatically degradable thermogelling poly (alanine-co-leucine)-poloxamer-poly (alanine-co-leucine). Biomacromolecules 2011, 12, 1234-1242.
    (60) Benguigui, L.; Boué, F. Homogeneous and inhomogenous polyacrylamide gels as observed by small angle neutron scattering: A connection with elastic properties. The European Physical Journal B - Condensed Matter and Complex Systems 1999, 11, 439-444.
    (61) Hirokawa, Y.; Okamoto, T.; Kimishima, K.; Jinnai, H.; Koizumi, S.; Aizawa, K.; Hashimoto, T. Sponge-like heterogeneous gels: hierarchical structures in poly (N-isopropylacrylamide) chemical gels as observed by combined scattering and confocal microscopy method. Macromolecules 2008, 41, 8210-8219.
    (62) Horkay, F.; Basser, P. J.; Hecht, A.-M.; Geissler, E. Structural investigations of a neutralized polyelectrolyte gel and an associating neutral hydrogel. Polymer 2005, 46, 4242-4247.
    (63) Singh, S. S.; Aswal, V.; Bohidar, H. Structural evolution of aging agar-gelatin co-hydrogels. Polymer 2009, 50, 5589-5597.
    (64) Imran, A. B.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature communications 2014, 5.
    (65) Rösler, A.; Klok, H.-A.; Hamley, I. W.; Castelletto, V.; Mykhaylyk, O. O. Nanoscale structure of poly (ethylene glycol) Hybrid block copolymers containing amphiphilic β-strand peptide sequences. Biomacromolecules 2003, 4, 859-863.
    (66) Moore, J. L.; Caprioli, R. M.; Skaar, E. P. Advanced mass spectrometry technologies for the study of microbial pathogenesis. Current opinion in microbiology 2014, 19, 45-51.
    (67) Uzawa, T.; Nishimura, C.; Akiyama, S.; Ishimori, K.; Takahashi, S.; Dyson, H. J.; Wright, P. E. Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences 2008, 105, 13859-13864.
    (68) Forood, B.; Feliciano, E. J.; Nambiar, K. P. Stabilization of alpha-helical structures in short peptides via end capping. Proceedings of the National Academy of Sciences 1993, 90, 838-842.
    (69) Gibson, M. I.; Cameron, N. R. Experimentally facile controlled polymerization of N‐carboxyanhydrides (NCAs), including O‐benzyl‐L‐threonine NCA. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 2882-2891.
    (70) Breedveld, V.; Nowak, A. P.; Sato, J.; Deming, T. J.; Pine, D. J. Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 2004, 37, 3943-3953.
    (71) Sreerama, N.; Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical biochemistry 2000, 287, 252-260.
    (72) Brahms, S.; Brahms, J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. Journal of molecular biology 1980, 138, 149-178.
    (73) Choi, Y. Y.; Jang, J. H.; Park, M. H.; Choi, B. G.; Chi, B.; Jeong, B. Block length affects secondary structure, nanoassembly and thermosensitivity of poly (ethylene glycol)-poly (L-alanine) block copolymers. Journal of Materials Chemistry 2010, 20, 3416-3421.
    (74) Gibson, M. I.; Cameron, N. R. Organogelation of sheet–helix diblock copolypeptides. Angewandte Chemie International Edition 2008, 47, 5160-5162.
    (75) Wong, M. S.; Cha, J. N.; Choi, K.-S.; Deming, T. J.; Stucky, G. D. Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters 2002, 2, 583-587.
    (76) Jan, J.-S.; Lee, S.; Carr, C. S.; Shantz, D. F. Biomimetic synthesis of inorganic nanospheres. Chemistry of materials 2005, 17, 4310-4317.
    (77) Hou, S.-S.; Hsu, Y.-Y.; Lin, J.-H.; Jan, J.-S. Alkyl-poly (l-threonine)/Cyclodextrin Supramolecular Hydrogels with Different Molecular Assemblies and Gel Properties. ACS Macro Letters 2016, 5, 1201-1205.
    (78) Kikhney, A. G.; Svergun, D. I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Letters 2015, 589, 2570-2577.
    (79) Ryan, A.; Hamley, I.; Bras, W.; Bates, F. Structure development in semicrystalline diblock copolymers crystallizing from the ordered melt. Macromolecules 1995, 28, 3860-3868.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE