簡易檢索 / 詳目顯示

研究生: 李建宜
Li, Jian-Yi
論文名稱: 應用於射頻前端系統之CMOS低雜訊放大器、主動平衡器與振盪器之研製
Implementation of CMOS Low Noise Amplifiers, Active Balun and Oscillators for RF Front-end System Applications.
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 194
中文關鍵詞: 互補金屬氧化物半導體低雜訊放大器主動平衡器振盪器
外文關鍵詞: CMOS, Low noise amplifiers, Active Balun, Oscillators
相關次數: 點閱:133下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來對於無線通訊系統之研究有卓越的發展,目前對於射頻前端系統,低成本、低功率與小體積為現今無線通訊的主要訴求,為了實現以上的條件,則需要創新的電路設計與先進之製程技術來互相配合。
    在射頻前端系統中,低雜訊放大器、平衡器與振盪器為其關鍵性零組件,其中低雜訊放大器的主要目的為放大輸入端之射頻訊號,並且在射頻前端系統中,第一級之電路是用來降低來自於後級電路之雜訊,並且將影響後級電路的設計規格,因此低雜訊放大器有著較高效能設計需求,而高效能之低雜訊放大器將使後級的混頻器等電路更能夠容忍較高的規格誤差。首先在低雜訊放大器方面,將設計應用於S頻段與超寬頻頻段之低雜訊放大器,並藉由其量測數據來探討低雜訊放大器特性表現。本論文設計一個應用於2.4-GHz具有鏡像信號抑制作用高線性度之低雜訊放大器,在鏡像信號抑制頻帶使用一主動濾波器來達成高選擇性的鏡相濾除與減少晶片面積使用,在高線性度應用方面使用一個以PMOS設計的DS線性器來減少gm3在IIP3上的影響。另一個使用在超寬頻之低雜訊放大器則是使用主動回授的技術來達到降低輸入匹配的品質因數,以減少匹配元件的數目,並使用center-tapped電感來設計輸出匹配,以達成減小晶片面積之目的。
    主動式平衡器於本論文第四章中討論,量測結果顯示使用CS架構與CG架構並聯可達到超寬頻之輸入匹配,使輸入阻抗在3.1 GHz到10.6 GHz都可以接近於50歐姆。相位考量是採用CS架構與CG架構的放大相位反向,振幅之不匹配效應則可以調整CS架構與CG架構中個別電晶體的大小及偏壓使其振幅誤差低於0.5 dB,另一方面則是採用電流再利用之方法來解決主動平衡器高功率消耗的問題。
    最後在第五章討論二個使用二階共振腔之CMOS壓控振盪器,分別使用一個高品質因數的center-tapped電感與主動濾波器來做應用於802.11/a/b/g系統規格下之壓控振盪器。首先討論的是5.37-GHz並具二倍頻抑制之CMOS壓控振盪器,接下來探討利用主動濾波器來達到二倍頻抑制的高效能2.33-GHz 之CMOS壓控振盪器。量測結果顯示可以利用抑制振盪器的二倍頻來達到良好之相位雜訊結果,並且利用大訊號分析來分析振盪器二倍頻對基頻訊號的干擾。

    Wireless telecommunications research has experienced a remarkable renaissance in the last decade. Low cost, low power and a compact-size are the essential requirements for modern RF frond-end systems. To accomplish a successful design that meets all of these requirements, circuit design techniques and advanced process technology are necessary.
    In the RF frond-end system, low-noise amplifiers, baun, and oscillators are essential components. LNA is used to amplify RF input signals, and its performance must be kept sufficiently high to minimize the requirements for circuits’ parameters from the following stages. In research on LNA, the design, fabrication, and measured performance of LNAs operating at the S-band and UWB will be presented. In this dissertation, 2.4 GHz high linearity LNA with Image-rejection is proposed. The active filter is used for high selection of image band and reducing the chip size. The linearity of 2.4-GHz Image-Rejection LNA is improved by employing derivative superposition (DS) technique with PMOS auxiliary stage and rejecting the gm3 for high input third-order intercept point (IIP3). Then an UWB LNA using active shunt-feedback technique has been proposed. By employing active shunt-feedback technique, the UWB LNA achieves wideband input matching characteristic and uses fewer devices to reduce the chip size. The output matching of the proposed UWB LNA uses a center-tapped inductor for second-order matching design.
    An ultra-wideband active balun using standard 0.18 μm CMOS process has been presented in chapter 4. The measurement shows that the active balun using parallel common-gate and common-source generates a 50 Ω real part and achieves wideband input matching from 3.1 GHz to 10.6 GHz. The phase behaviors are dominated by CS and CG. The amplitude imbalances are dominated by the bias and size of CG and CS and amplitude imbalances is less than 0.5 dB. In order to solve the issue of the active balun which is the high power consumption, the current-reused structure is used.
    Finally, in chapter 5, CMOS second-order LC VCOs are designed and discussed. Two ways to design the LC tank with a high Q passive center-tapped inductor and an active inductor for IEEE 802.11a/b/g applications. A 5.37 GHz second harmonic suppressed cross-coupled CMOS VCO using circuit is presented firstly. Following, a high performance 2.33 GHz cross-coupled CMOS VCO using active filtering circuit is presented. Measured results demonstrate that low phase noise has been achieved by second harmonic suppression of cross-coupled CMOS VCO. The large-signal simulation results prove that the second harmonic signal distorts to the fundamental signal.

    ABSTRACT (Chinese) I ABSTRACT (English) III ACKNOWLEDGMENT V CONTENTS VII FIGURE CAPTIONS XI TABLE CAPTIONS XVI CHAPTER 1 Introduction 1.1 Development of Telecommunications 1 1.2 Overview of RF Design 4 1.3 Receiver Architectures 8 1.4 Motivation 16 1.5 Organization of the Dissertation 17 CHAPTER 2 Basic Concepts in RF Circuits 2.1 Nonlinearity 19 2.2 Noise 24 2.3 RF Circuits Parameter Considerations 29 2.4 CMOS Fabricated Inductors 42 CHAPTER 3 Low Noise Amplifiers 3.1 General Considerations 49 3.2 A 2.4-GHz High Linearity Image-Rejection CMOS LNA 61 3.3 An Ultra-Wideband CMOS LNA 79 3.4 Summary 94 CHAPTER 4 Active Balun 4.1 General Considerations 96 4.2 An Ultra-Wideband CMOS Active Balun 100 4.3 Summary 118 CHAPTER 5 Oscillators 5.1 General Considerations 119 5.2 Oscillator Parameter Definitions 129 5.3 Harmonic Suppression CMOS LC VCOs 136 5.4 Summary 156 CHAPTER 6 Conclusions and Future Works 6.1 Conclusions 157 6.2 Future Works 160 APPENDIX Simulations of active inductors and QPSK system A Simulations of active inductors 161 B Simulations of QPSK system 170 REFERENCES 177 PUBLICATION LIST 191 VITA 194

    CHAPTER 1 Introduction
    [3-1] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [3-2] P. Vizmullar, “RF design guide: Systems, Circuits, and Equations,” Artech House, 1995
    [3-3] Y. Shim, C. W. Kim, J. Lee, and S. G. Lee, “Design of Full Band UWB Common-Gate LNA,” IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 10, 721-723, 2007.
    [3-4] Y. J. Lin, S. S. H. Hsu, J .D. Jin, and C. Y. Chan, “A 3.1 – 10.6 Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique,” IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 3, 232-234, 2007.
    [3-5] E. Armstrong, “The Super-Heterodyne - Its Origin, Development, and Some Recent Improvements,” Proceedings of the I.R.E., Vol. 12, 539-552, 1924.
    [3-6] R. Hartley, “Modulation System,” U.S. Patent 1,666,206, 1928.
    [3-7] J. Archer, J. Granlund, R. Mauzy, “A Broad-Band UHF Mixer Exhibiting High Image Rejection over a Multidecade Baseband Frequency Range,” IEEE J. Solid-State Circuits, Vol. 16, 385-392, 1981.
    [3-8] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” Academic Press, San Diego, USA, 1998.
    [3-9] K. Y. Hashimoto, “Surface Acoustic Wave Devices in Telecommunications,” Springer, 2000.
    [3-10] D. Tucker, “The History of the Homodyne and Synchrodyne,” Journal of the British Institution of Radio Engineers, Vol. 14, 143-154, 1954.
    [3-11] B. Razavi, “A 2.4 GHz CMOS receiver for IEEE 802.11 wireless LAN’s,” IEEE J. Solid-State Circuits, Vol. 34, 1382-1385, 1999.
    [3-12] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q Active Balanced Harmonic Mixer with IM2Cancelers and a 45 Degree Phase Shifter,” in IEEE Solid-State Circuits Conf. Dig. Tech. Papers, 368-369, 1998.
    [3-13] Z. Zhang, and J. Lau, “A flicker-noise-free DC-offset-free harmonic mixer in a CMOS process,” in IEEE radio and Wireless Conf. Dig. Tech. Papers, 113-116, 2001.
    [3-14] L. Sheng, J. C. Jensen, and L. E. Larson, “A Wide-Bandwidth Si/SiGe HBT Direct Conversion Sub-Harmonic Mixer/Downconverter,” IEEE J. Solid-State Circuits, Vol. 35, 1329-1337, 2000.
    [3-15] A. Springer, L. Maurer, and R. Weigel, “RF System Concepts for Highly Integrated RFICs for W-CDMA Mobile Radio Terminals,” IEEE Trans. Microwave Theory Tech., Vol. 50, 254-267, Jan. 2001.

    CHAPTER 2 Basic Concepts in RF Circuits
    [2-1] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [2-2] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 1998.
    [2-3] S. A. Maas, “Nonlinear Microwave Circuits”, Norwood, MA: Artech House, 1988.
    [2-4] L. M. Couch, “Digital and Analog Communication Systems”, New York: Macmillan, 1993.
    [2-5] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hall, 2002.
    [2-6] R. Navid, ”Amplitude and Phase Noise in Modern CMOS Circuits,” Dept. of Electrical Engineering Stanford University, 2004.
    [2-7] F. Danneville, H. Happy, G. Damrine, J. Maxence, and A. Cay, “Microscopic Noise Modeling and Macroscopic Noise Models: How Good a Connection?” IEEE Trans. Electron Devices, Vol. 41, 779, 1994.
    [2-8] H. A. Haus, “Representation of Noise in Linear Twoports,” proc. IRE Vol. 48, 67-74, 1960.
    [2-9] S. M. Sze, “Physics of Semiconductor Devices,” Boston: McGraw-Hill, 1999.
    [2-10] Y. Nemirovsky, I. Brouk, and Claudio G. Jackobson, “1/f Noise in CMOS Transistors for Analog Applications,” IEEE Trans. Electron Devices, Vol. 48, No. 5, 921-927, 2001.
    [2-11] G. Gonzales, “Microwave Transistor Amplifier Analysis and Design,” Prentice Hall, 1997.
    [2-12] D. Manstretta, R. Castello, F. Gatta, P. Rossi, F. Svelto, “CMOS Direct Conversion Receiver Front-End for UMTS,” IEEE ISSCC Visual Supplement, 192-193, 2002.
    [2-13] K. Kivekäs, A. Pärssinen, K. Halonen, “Characterization of IIP2 and DC-Offsets in Transconductance Mixers,” IEEE Tran. On Circuits and Systems Circuits-2, Vol. 48, 1028-1038, 2001.
    [2-14] B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEE Transactions on Circuits and Systems-II, Vol. 44, 428-435, 1997.
    [2-15] A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE J. Solid-State Circuits, Vol. 30, 1399-1410, 1995.
    [2-16] A. Springer, L. Maurer, R. Weigel, “RF System Concepts for Highly Integrated RFICs for W-CDMA Mobile Radio Terminals,” IEEE Trans. Microwave Theory Tech., Vol. 50, 254-267, 2001.
    [2-17] D. Manstretta, R. Castello, F. Gatta, P. Rossi, F. Svelto, “CMOS Direct Conversion Receiver Front-End for UMTS,” IEEE ISSCC Visual Supplement, 192-193, 2002.
    [2-18] K. Kivekäs, A. Pärssinen, K. Halonen, “Characterization of IIP2 and DC-Offsets in Transconductance Mixers,” IEEE Tran. On Circuits and Systems Circuits–2, Vol. 48, 1028-1038, 2001.
    [2-19] J. Jussila, K. Halonen, “WCDMA Channel Selection Filter with high IIP2” Proceedings of ISCAS 2002, I-533-I-536, 2002.
    [2-20] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, 419-422, 1944.
    [2-21] A. Zolfaghari, and B. Razavi, “Stacked Inductors and Transformers in CMOS Technology,” IEEE Journal of Solid-State Circuits, No. 4, 620-628, 2001.
    [2-22] O. Kenneth, “Estimation Methods for Quality Factors of Inductors Fabricated in Silicon Integrated Circuit Process Technologies,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 8, 1249-1252, 1998.
    [2-23] A. M. Niknejad, and R. G. Meyer, “Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF ICs,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 10, 1470-1481, 1998.
    [2-24] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic Analysis and Modeling of Integrated Inductors and Transformers in RF IC Design,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 47, No. 8, 699-713, 2000.
    [2-25] S. J. Pan, W. Y. Yin, and L.-W. Li, “Performance Trends of on-Chip Spiral Inductors for Rfics,” Progress In Electromagnetics Research, PIER 45, 123-151, 2004.
    [2-26] E. C. Park, J. B. Yoon, S. Hong, and E. Yoon, “A 2.6 GH Low Phase-Noise VCO Monolithically Integrated with High Q MEMS Inductors,” Solid-State Circuits Conference, (ESSCIRC 2002), 143-146, 2002.
    [2-27] H. M. Greenhous, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Trans. Parts, Hybrids and Packaging, Vol. PHP-10, 101-109, 1974.
    [2-28] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A High-Q Broad-Band Active Inductor an Its Application to a Low-Loss Analog Phase Shifter,” IEEE transaction on Microwave Theory an Techniques, Vol. 44, No. 12, 2369-2374, 1996.
    [2-29] J. N. Yang, M. J. Wu, and Chen-Yi Lee, “Loss Compensation in RF CMOS Active Inductor Using Capacitor,” IEICE Transaction Electronic, Vol. E87-C, No. 12, 2198-2201, 2004.
    [2-30] J. N. Yang, M. J. Wu, and Chen-Yi Lee, “An improving Active Inductor Using a Compensation Resistor,” WSEAS Transactions on Circuits and Systems, Issue 11, Vol. 4, 1529-1532, 2005.
    [2-31] L. Lee, and Abu Khari bin A'ain, Kordesch, “A 2.4-GHz CMOS Tunable Image-Rejection Low-Noise Amplifier with Active Inductor,” in Circuits and Systems, 2006. APCCAS 2006, 1679 -1682, 2006.

    CHAPTER 3 Low Noise Amplifiers
    [3-1] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, 419-422, 1944.
    [3-2] D. Cassan, and J. Long, “1V 0.9dB NF Low Noise Amplifier for 5-6GHz WLAN in 0.18um CMOS,” in Proceedings of CICC, 419-422, 2002.
    [3-3] Y. Youn, N. Kim, J. Chang, Y. Lee, and H. Yu, “A 2-GHz RF Front-End Transceiver Chipset in CMOS Technology for PCS and IMT-2000 Applications,” in Digest of RFIC, 271-274, 2002.
    [3-4] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hall, 2002.
    [3-5] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [3-6] S. K. Wong, F. Kung, S. Maisurah, M. N. B. Osman, and S. J. Hui, “Design of 3 to 5 GHz Cmos Low Noise Amplifier for Ultra-Wideband (UWB) System,” Progress In Electromagnetics Research, PIER C, Vol. 9, 25-34, 2009.
    [3-7] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier”, IEEE J. Solid-State Circuits, Vol. 32, 745-759, 1997.
    [3-8] T. Soorapanth, and T. H. Lee, ”RF Linearity of Short-Channel MOSFETs”, In First International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, 81-84, 1997.
    [3-9] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer”, IEEE J. Solid-State Circuits, Vol. 31, 1939-1996, 1996.
    [3-10] R. G. Meyer, and W. D. Mack, “A 1-GHz Bi-CMOS RF Front-End IC”, IEEE J. Solid-State Circuits, Vol. 29, 350-355, 1994.
    [3-11] H. W. Chiu, S. S. Lu, and Y. S. Lin, “A 2.17-dB NF 5-GHz-Band Monolithic CMOS LNA With 10-mW DC Power Consumption”, IEEE Trans. Microwave Theory Tech., Vol. 53, 813-824, 2005.
    [3-12] C. Hull, J. Tham, and Chu R, “A Direct-Conversion Receiver for 900 MHz (ISM Band) Spread-Spectrum Digital Cordless Telephone”, IEEE Journal of Solid-State Circuits, Vol. 31, 1955-1963, 1996.
    [3-13] V. Aparin and L. E. Larson, “Modified Derivative Superposition Method for Linearizing FET Low-Noise Amplifiers,” IEEE Trans. Microwave Theory Tech., Vol. 53, No. 2, 571-581,2005.
    [3-14] T. Kim and B. Kim, “Post-Linearization of Cascode CMOS Low Noise Amplifier Using Folded PMOS IMD Sinker,” IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, 182-184, 2006.
    [3-15] S. Ganesan, E. Sánchez-Sinencio, and J. Silva-Martinez, “A Highly Linear Low-Noise Amplifier,” IEEE Trans. Microwave Theory Tech., Vol. 54, No. 12, 4079-4085, 2006.
    [3-16] L. Lee; Abu Khari bin A'ain; Kordesch, and A.V, “A 2.4-GHz CMOS Tunable Image-Rejection Low-Noise Amplifier with Active Inductor,” in Circuits and Systems, 2006. APCCAS 2006, 1679 -1682, 2006.
    [3-17] A. N. L Chan, C. B. Guo, and H. C. Luong, “A 1-V 2.4-GHz CMOS LNA with Source Degeneration as Image-Rejection Notch Filter,” ISCAS 2001, Vol. 4, 890-893, 2001.
    [3-18] D. C. Ahlgren, N. King, G. Freeman, R. Groves, and S. Subbanna, “SiGe BiCMOS Technology for RF Device and Design Applications,” in Proc. IEEE Radio Wireless Conf., 281-284, 1999.
    [3-19] T. Nguyen, N. Oh, C. Cha, Y. Oh, G. Ihm, and S. Lee, “Image-Rejection CMOS Low-Noise Amplifier Design Optimization Techniques,” Microwave Theory Tech., Vol. 53, No. 2, 538-547, 2005.
    [3-20] T. Nguyen, S. Han, and S. Lee, “Ultra-Low-Power 2.4 GHz Image-Rejection Low-noise Amplifier,” IEEE ELECTRONICS LETTERS, Vol. 41, No. 15, 842-843, 2005.
    [3-21] L. C. Lee, Abu Khari bin A'ain Kordesch, and A.Victor, “A 5 GHz CMOS Tunable Image-Rejection Low-Noise Amplifier,” in 2006 International RF and Microwave Conf., 152-156, 2006.
    [3-22] K. H. Chen, J. H. Lu, B. J. Chen, and Shen-Iuan Liu, “An Ultra-Wide-Band 0.4-10-GHz LNA in 0.18-μm CMOS,” IEEE Transactions on Circuits and System, Vol. 54, No. 3, 217-220, 2007.
    [3-23] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and Sang-Gug Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5-GHz UWB System,” IEEE J. Solid-State Circuits, Vol. 40, No. 2, 544-547, 2005.
    [3-24] J. Borremans, P. Wambacq, C. Y. Soens, Rolain, and Maarten Kuijk, “Low-Area Active-feedback Low-Noise Amplifier Design in Scaled Digital CMOS,” IEEE J. Solid-State Circuits, Vol. 43, No. 11, 2422-2433, 2008.
    [3-25] G. S. K. Yong, and C. E. Saavedra, “A compact capacitor compensated wideband balun in CMOS technology,” Communications, 2008 24th Biennial Symposium, 306-309, 2008.
    [3-26] A. Meaamar, B. C. Chye, D. M. Anh, and Yeo Kiat Seng, ”A 3-8 GHz Low-Noise CMOS Amplifier,” IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 4, 245-247, 2009.
    [3-27] S. Joo, T. Y. Choi, J. Y. Kim, and “A 3-to-5 GHz UWB LNA with a Low-Power Balanced Active Balun,” IEEE Radio Frequency Integrated Circuits Symposium, 303-306, 2009.
    [3-28] B. G. Perumana, J. H. C. Zhan, S. S. Taylor, B. R. Charlton, and Joy Laskar, “Resistive-feedback CMOS Low-Noise Amplifier for Multiband Applications,” IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1218-1225, 2008.
    [3-29] Y. Cui, G. Niu, Y. Li, S. S. Taylor, Q. Liang, and J. D. Cressler, “On the Excess Noise Factor and Noise Parameter Equations for RF CMOS,” in Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, 40-43, 2007.
    [3-30] M. T. Hsu and Shih-Kai Lin, “A Low-Power Wideband CMOS Low-Noise Amplifier Using Current-Reused Technique,” Microwave Opt Technol Lett., Vol. 51, No. 9, 2077-2080, 2009.

    CHAPTER 4 Active Balun
    [4-1] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and Jangsup Yoon, “Broadband Active Balun Using Combined Cascode-Cascade Configuration”, IEEE Trans. Microw. Theory Tech., Vol. 56, No. 8, 1790-1795, 2008.
    [4-2] D. H. Lee, J. Han, C. Park, and Songcheol Hong, “A CMOS Active Balun Using Bond Wire Inductors and a Gain Boosting Technique,” IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 9, 676-678, 2007.
    [4-3] C. M. Lin, , C. C. Su, S. H. Hung, and Y. H. Wang, “A Compact Balun Based on Microstrip EBG Cell and Interdigital Capacitor,” Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
    [4-4] D. M. Chen, and Zhi-Ming Lin, “A Fully Integrated 3 to 5 GHz CMOS Mixer with Active Balun for UWB Receiver,” Circuits and Systems, 370-373, 2006.
    [4-5] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [4-6] Y. J. Lin, S. S. H. Hsu, J .D. Jin, and C. Y. Chan, “A 3.1 - 10.6 Ultra-Wideband CMOS Low Noise Amplifier with Current-Reused Technique,” IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 3, 232-234, 2007.
    [4-7] B. J. Huang, B. J. Huang, K. Y. Lin, and Huei Wang, “A 2–40 GHz Active Balun Using 0.13 μm CMOS Process,” IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 3 164-166, 2009.
    [4-8] S. K. Wong, F. Kung, S. Maisurah, M. N. B. Osman, and S. J. Hui, “Design of 3 to 5 GHz Cmos Low Noise Amplifier for Ultra-Wideband (UWB) System,” Progress In Electromagnetics Research, PIER C, Vol. 9, 25-34, 2009.
    [4-9] Y. Shim, C. W. Kim, J. Lee, and Sang-Gug Lee, “Design of Full Band UWB Common-Gate LNA,”IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 10, 721-723, 2007
    [4-10] K. H. Chen, J. H. Lu, B. J. Chen, and Shen-Iuan Liu, ”An Ultra-Wide-Band 0.4-10-GHz LNA in 0.18-μm CMOS,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM-II: EXPRESS BRIEFS, Vol. 54, No. 3, 217-220, 2007.
    [4-11] S. H. Weng, H. Y. Chang, and Chau-Ching Chiong;” A DC-21 GHz Low Imbalance Active Balun Using Darlington Cell Technique for High Speed Data Communications,” IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 11, 728-730, 2009.
    [4-12] G. S. K. Yong, and C. E. Saavedra, “A compact capacitor compensated wideband balun in CMOS technology,” Communications, 2008 24th Biennial Symposium, 306-309, 2008.

    CHAPTER 5 Oscillators
    [5-1] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [5-2] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hall, 2002.
    [5-3] A. Hajimiri, and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J Solid-State Circ., Vol. 33, No. 2, 179-194, 1999.
    [5-4] D. B. Leeson, “A Simplified Model of Feedback Oscillator Noise Spectrum,” Proceedings of the IEEE, Vol. 42, 329-330, 1966.
    [5-5] C. Mahatthajatuphat, S. Saleekaw, , and P. Akkaraekthalin, “A Rhombic Patch Monopole Antenna With Modified Minkowski Fractal Geometry For UMTS, WLAN, And Mobile WIMAX Application” Progress In Electromagnetics Research, PIER 89, 57-74, 2009.
    [5-6] F. J. Wang, and J.-S. Zhang, “Wideband Cavity-Backed Patch Antenna for PCS/IMT2000/2.4 GHz WLAN,” Progress In Electromagnetics Research, PIER 74, 39-46, 2007.
    [5-7] H. H. Hsieh, and Liang-Hung Lu, “A Low-Phase K-Band CMOS VCO,” IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 10, 552-554, 2006.
    [5-8] B. D. Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz Low-Phase-Noise Integrated LC-VCO Set With Flicker-Noise Upconversion Minimization,” IEEE J. Solid-State Circuits, Vol. 35, No. 7, 1034-1038, 2000.
    [5-9] H. Kim, S. Ryu, Y. Chung, J. Choi, and Buman Kim, “ A Low Phase-Noise CMOS VCO With Harmonic Tuned LC Tank,” IEEE Trans. Microwave Theory. Tech. Vol. 54, No. 7, 2917-2923, 2006.
    [5-10] J. Rael and A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” Proceeding of Customs Integrated Circuits Conference, 569–572, 2000.
    [5-11] E. C. Park, J. B. Yoon, S. Hong, and E. Yoon, “A 2.6 GH Low Phase-Noise VCO Monolithically Integrated with High Q MEMS Inductors,” Solid-State Circuits Conference, (ESSCIRC 2002), 143-146, 2002.
    [5-12] H. Hayashi, M. Muraguchi, Y. Umeda, , and T. Enoki, “A High-Q Broad-Band Active Inductor and Its Application to a Low-Loss Analog Phase Shifter,” IEEE Trans. Microwave Theory. Tech., Vol. 44, No. 12, 2369-2374, 1996.
    [5-13] S. Hara. T. Tokumitsu, and M. Aikawa, “Lossless broad-band monolithic microwave active inductors,” IEEE Trans. Microwave Theory. Tech., Vol. 37, No. 12, 1979-1984, 1989.
    [5-14] G. F. Zhang, M. L. Villegas, and C. S. Ripoll, “New broadband tunable monolithic microwave floating active inductor,” Electron. Lett., Vol. 28, No. 1, 78-81, 1992.
    [5-15] C. -M. Hung, and Kenneth K. O, “A 1.24-GHz monolithic CMOS VCO with phase noise of 137 dBc/Hz at a 3-MHz offset,” IEEE Microw. Guided Wave Lett., Vol. 9, No. 3 , 111-113, 1999.
    [5-16] A. Hajimiri, , and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J Solid-State Circ., Vol. 34, No. 5, 717-724, 1999.
    [5-17] H. Darabi, and A. A. Abidi, ”Noise in RF-CMOS Mixers: A simple Physical Model,” IEEE J. Solid-State Circuits, Vol. 35, No. 1, 15-25, 2000.
    [5-18] N. Boughanmi, D. B. Issa, A. Kachouri, and M. Samet , “High Q-VCO with Low Phase Noise for Communications Applications,” Design and Test of Integrated Systems in Nanoscale Technology, (DTIS 2006). 370-373, 2006.
    [5-19] J. H. Lee, , C. C. Chen, and Y. S. Lin, “The 5.8-GHz Fully Integrated Low-Power Low-Phase-Noise CMOS LC VCOs Using RC Noise-Filtering Technique,” Microwave Opt Technol Lett., Vol. 50, No. 11, 2907-2911, 2008.
    [5-20] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 10,. 446-448, 2003.
    [5-21] Nam-Jin Oh, and Sang-Gug Lee, “11-GHz CMOS Differential VCO with Back-Gate Transformer Feedback,” IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 733-735, 2005.
    [5-22] G. D. Astis, D. Cordeau, J. M. Paillot, and L. Dascalescu, “A 5-GHz Fully Integrated Full PMOS Low-Phase-Noise LC VCO,”IEEE J. Solid-State Circuits, Vol. 40, No. 10, 2087-2091, 2005.
    [5-23] X. Li, S. Shekhar, and D. J. Allstot, “Low-Power gm-boosted LNA and VCO Circuits in 0.18μm CMOS,” ISSCC Dig. Tech. Papers, 534-535, 2005.
    [5-24] J. Gil, S. S. Song, H. Lee, and H. Shin, “A-119.2 dBc/Hz at 1 MHz, 1.5 mW, Fully Integrated, 2.5-GHz, CMOS VCO Using Helical Inductors,” IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 11, 457-459, 2003.
    [5-25] N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE, J. Solid-State Circuits, Vol. 38, No. 8, 1333-1342, 2003.
    [5-26] Y. Ku, , and SeongHwan Cho, “An Optimum Current Mirror Ratio for Low Phase Noise LC-VCO,” IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 809-811, 2008.

    APPENDIX Simulations of active inductors and QPSK system
    [A-1] M. Ismil, R. Wassenaar, and W. Morrison, “A high-Speed Continuous-Time Bandpass VHF Filter in CMOS Technology,” proc. IEEE ISCAS, Vol. 3, 1761-1764, 1991.
    [A-2] J. S. Ko and K. Lee, ”Low power, tunable active inductor and its applications to monolithic VCO and BPF”, IEEE MTT-S Digest,1997
    [A-3] Yi-Tzu Yang, Chien-Cheng Wei, Hsien-Chin Chiu “A 2-6 GHz Tunning Range UWB CMOS Voltage Control Oscillator using Active Inductor Technology”, IEDMS,PD052,2006
    [A-4] Y. Wu, X. Ding, M. Ismail, and Håkan Olsson, ”RF Bandpass Filter Design Based on CMOS Active Inductors”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, Vol. 50, No. 12, 2003
    [A-5] A. Thanachayanont, “VHF CMOS integrated active inductor,” Electronics Letters, Vol.32, 999-1000, 1996.
    [A-6] T. Y. K. Lin and A. J. Payne, “Design of a Low Voltage, Low Power, Wide Tuning Integrated Oscillator,” IEEE International Symposium on Circuit and Systems, Vol. 4, 28-31, 2000.
    [A-7] J. N. Yang, “The study of Radio Frequency CMOS Active Inductors and Applications,” NCTU, Doctoral Dissertation, 2006.
    [A-8] K. R. Rao, J. Wilson, and M. Ismail, ”A CMOS RF Front-End for a Multistandard WLAN Receiver,” IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 321-323, 2005.
    [A-9] Tae-Sung Kim, and Byung-Sung Kim, “Post-Linearization of Cascode CMOS Low Noise Amplifier Using Folded PMOS IMD Sinker,” IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, 182-184, 2006.
    [A-10] Yung-Ming Chiu, “Design of 2.4GHz and 5.7GHz CMOS RFICs For IEEE 802.11 WLAN Application”, National Chen Kung University, June 2003.
    [A-11] J-H Wu, “Simulation, Implementation and Integration Test of an RF Module for 5.2GHz Wireless LANs” National Chen Kung University, June 2001.
    [A-12] Cheng-Chi Yen, “2.4 GHz ISM-Band CMOS Transceiver RF Front-end and CMOS PA with Diode Linearizer”, National Chung Cheng University, June 2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE