簡易檢索 / 詳目顯示

研究生: 張嘉文
Chang, Chia-Wen
論文名稱: 以溶膠凝膠法製備Ce, S共摻雜TiO2光觸媒在可見光下處理二甲基硫之研究
Photocatalytic Degradation of Dimethyl Sulfide under Visible Light Using Ce, S Co-doped TiO2 Prepared by the Sol-gel Method
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 171
中文關鍵詞: 二甲基硫光觸媒反應動力反應機制S及Ce共摻雜
外文關鍵詞: Dimethyl sulfide (DMS), Photocatalyst, Kinetics, Reaction mechanism, Ce- and S- codped
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠凝膠法自製光觸媒,並藉由添加金屬鈰及非金屬硫以提升光觸媒於可見光下降解具惡臭味之含硫揮發性有機汙染物,二甲基硫(DMS)之效率,並改變硫(5 mol%)及鈰(0.1, 0.5, 1 mol%)之摻雜量、停留時間(35-180秒)、進流濃度(0.65-2.4 ppm)及絕對濕度(5-35 g/kg)以探討參數條件對於光催化效率及CO2礦化之影響。
    同時利用各種輔助實驗,如XRD、TGA、BET、SEM、ICP-MS、FTIR、UV-visible及XPS特性分析以探討光觸媒之物理化學特性。TGA及XRD分析結果表示,光觸媒鍛燒溫度在500 oC可得較完整的銳鈦礦 (Anastase)晶相。透過硫及鈰的添加,經UV-visible分析可發現有明顯紅移現象。用以分析化學組態之XPS分析結果顯示,元素Ti、O、S分別以Ti4+、O2-及S6+之價數存於觸媒晶格中並鍵結為Ti-O-S,Ce則是Ce3+及Ce4+共存於觸媒中。
    光催化結果表示,S5/TiO2在降低DMS進流濃度後,釋出大量的活性位基以利氫氧自由基(•OH)的生成並促使反應進行,大幅提升了光催化效果及礦化。在參數條件影響研究中發現,轉化率及礦化率皆隨停留時間的增加而增加,乃因停留時間的增加,活性位基與汙染物之接觸時間亦增加。此外,在低濃度及低水氣時可得良好之轉化率,但礦化率卻可能隨水氣的增加而增加。於最理想之條件下,轉化率可達97.84 %,CO2礦化率可達45.69 %。
    在碳回收率探討部分,以7.83 ppm進流DMS,停留時間35秒,絕對濕度18g/kg,及45oC條件下,藉由GC-MS測得光催化反應後氣態DMS在第5分鐘及第10分鐘下濃度分別為3.25及2.84 ppm,而DMDS在第5分鐘及第10分鐘下濃度分別為0.55及0.47 ppm,另CO2以CO2分析儀測得濃度在第5分鐘及第10分鐘下分別為2.61及3.43 ppm。列出可能反應式後並套入公式求得碳回收率分別約為81.9及86.0 %,推測CO等其他中間產物約占15-20 %。
    比較兩種動力模式,Mar & van Krevelen 模式 及 Langmuir-Hinshelwood 模式。結果顯示,DMS及水氣濃度和反應速率皆呈線性關係,且反應速率隨著溫度、DMS濃度及水氣濃度的增加而增加,而Langmuir-Hinshelwood 模式2較符合本研究之實驗數據,且推測本研究之DMS及水氣間具吸附競爭。DMS之吸附常數(KA)恆大於水氣之吸附常數(KW),表示DMS更易吸附在觸媒表面,更易占據觸媒表面之活性位基,因此當DMS濃從約330 大幅降低至約2.4 ppm時,DMS轉換率大幅提升。根據Arrhenius equation,活化能及碰撞因子分別是42.55 (kJ/mol)及1.89×〖10〗^10(mol/min/cm3)。
    光催化反應之中間產物及最終產物,透過FTIR監測並推測反應途徑,將DMS進流濃度設為2.4及4.5 ppm,絕對溼度為0及35 g/kg,並定義為dry及wet。FTIR結果顯示,波峰強度在dry及wet兩條件下具顯著差異,此結果呼應4-3.3結之假設,水氣可能促進中間產物及最終產物的生成,且中間產物會再氧化成CO2,使得隨相對濕度的增加,CO2礦化率亦增加。推測在dry條件下,O2、e-及•O2-乃反應之關鍵,C-S斷鍵及O原子反應為了主要之反應途徑。而在wet條件下,因H2O的參與,•OH成了光催化反應之關鍵,C-S斷鍵及S原子反應為兩主要之反應途徑。結果表示DMDS、DMSO、DMSO2、MSA及CO為可能之中間產物,而C及S最終產物可能為CO2及SO2或H2SO4。

    The purpose of this study was to prepare different samples of Ce- and S-codoped TiO2 nanoparticles by the sol-gel method and to investigate the photocatalytic activity regarded to dimethyl sulfide degradation under visible-light irradiation. The photocatalytic activity of the samples simulating indoor air was evaluated under various inlet DMS concentrations, absolute humidities, and residence times. The DMS inlet concentration ranged from 0.65 to 2.4 ppm. Absolute humidity varied from 5 to 35 g/kg. The residence time was set from 35 to 180 second.
    Characterization of TiO2, S/TiO2, and Ce/S/TiO2 were performed by various techniques, such as XRD, TGA, BET, SEM, ICP-MS, FTIR, UV-visible, and XPS.
    The XRD results show that co-doped S- and Ce- TiO2 would reduce the crystalline size. The UV-visible spectra analyses indicate that the absorbance in the visible region by S5/TiO2 and CenS5/TiO2 increases compared with TiO2. The XPS analyses of all photocatalysts show that Ti, O, and S exist as Ti4+, O2-, and S6+, respectively, and form Ti-O-S bonds in TiO2. The XPS spectra also prove that Ce3+, as Ce2O3, and Ce4+, as CeO2, exist in CenS5/TiO2 lattice and surface.
    According to the results of activity test, we chose S5/TiO2 for further study on the effects of operating parameters, including residence time, DMS inlet concentration, and relative humidity. The results show that the lower the DMS inlet concentration, the higher degradation rate and carbon mineralization are while residence time ranged from 70 to 120 second. The conversion of DMS is around 97.84 % and carbon mineralization is about 45.69 % under the best conditions.
    The carbon recovery has been calculated. The experimental condition was set at 7.83 ppm inlet DMS, 35 s residence time, 18 g/kg absolute humiditily, and 45 oC. The reactants, DMS, about 3.25 and 2.84 ppm, were detected by GC-MS in the fifth and tenth minutes, respectively, after the white LED light turned on. The intermediates, DMDS, about 0.55 and 0.47 ppm, respectively, were detected by GC-MS. CO2 concentration was detected by a CO2 analyzer. The CO2 concentration were 2.61 and 3.43 ppm, respectively. The carbon recoveries calculated were in the range of 81.9-86.0 %. It’s suggested that some intermediates, e.g., CO, may account for around 15-20 % of carbon.
    Two kinetic models, the Mar & van Krevelen model and the Langmuir-Hinshelwood model were used to analyze the data. The results show that the Langmuir-Hinshelwood model 2 may be feasible to describe the photocatalytic oxidation of DMS, and the model is based on the assumption that reaction takes place with [VOC]i and water both adsorbed on photocatalyst surface.
    Some reaction intermediates and products are detected in the gas phase and on the photocatalyst surface, as SO2, H2SO4, CO2, DMDS, DMSO, DMSO2, CO and MSA by FTIR spectra. Because the transmittance intensities of all species in the wet sample are stronger than that in the dry samples, It can be found that •O2- and •OH are the key species for the dry sample and the wet sample, respectively. Besides, the results are consistent with section 4-3.3. Water vapor and •OH may enhance the degradation of intermediates toward carbon mineralization and modify intermediate quantities. A detailed photocatalytic DMS degradation pathways are proposed, starting with O atom and C-S bond cleavage drives DMS oxidation in the dry sample, and starting with •OH drives DMS oxidation, C-S bond cleavage, and S oxidation in the wet sample.

    摘要 I ABSTRACT IV 致謝 VII LIST OF TABLES XIV LIST OF FIGURES XVI CHAPTER 1 INTRODUCTION 1 1-1 MOTIVATION 1 1-2 OBJECTIVES 4 CHAPTER 2 LITERATURES SURVEY 6 2-1 RSCS 6 2-1.1 Definition and sources of RSCs 6 2-1.2 Health effect and property of RSCs 7 2-2 PROPERTY OF DMS AND CONTROL TECHNOLOGIES 7 2-2.1 Sources and property of DMS 8 2-2.2 Control technologies of VOCs 11 2-3 PHOTOCATALYSIS 18 2-3.1 Semiconductor 18 2-3.2 Photocatalyst 19 2-3.3 Photocatalysis principle 20 2-3.4 Band gap 23 2-4 DOPING INTO TIO2 24 2-4.1 Doped TiO2 with metal atoms 27 2-4.2 Doped TiO2 with metal ions 34 2-4.3 Doped TiO2 with non-metal elements 39 2-4.4 Sensitizations 45 2-4.5 Other semiconductors 46 2-5 PHOTOCATALYST PREPARATION 48 2-5.1 Impregnation method 48 2-5.2 Sol-gel method 48 2-5.3 Precipitation 50 2-6 CHEMICAL REACTION KINETICS 51 2-6.1 Plug flow reactor 53 2-6.2 Differential reactor 55 2-6.3 Catalytic kinetic model 56 2-6.4 Arrhenius equation 64 CHAPTER 3 EXPERIMENTAL MATERIAL AND METHODS 65 3-1 PREPARATION OF PHOTOCATALYSTS 65 3-2 EXPERIMENTAL MATERIALS AND EQUIPMENTS 67 3-2.1 Chemicals 67 3-2.2 Reactor and experimental set-up 67 3-3 CHARACTERISTICS OF PHOTOCATALYSTS 73 3-3.1 Thermogravimetric/ differential thermal analysis (TG/DTA) 73 3-3.2 X-ray powder diffraction spectroscopy (XRD) 73 3-3.3 BET 74 3-3.4 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 75 3-3.5 Fourier transform infrared spectroscopy (FTIR) 75 3-3.6 UV-visible spectrometry 75 3-3.7 X-ray photoelectron spectroscopy (XPS) 76 3-3.8 Inductively coupled plasma mass spectrometry (ICP-MS) 76 3-4 EXPERIMENTAL METHODS 77 3-4.1 Research processes 77 3-4.2 Calibration curve 79 3-4.3 Preparation of photocatalytst film 81 3-4.4 The stability test of simulated gas system of DMS 82 3-4.5 The blank experiment of photocatalysis 83 CHAPTER 4 RESULTS AND DISCUSSION 84 4-1 CHARACTERISTIC OF PHOTOCATALYSTS 84 4-1.1 X-ray powder diffraction spectroscopy (XRD) 84 4-1.2 Thermogravimetric/ differential thermal analysis (TG/DTA) 89 4-1.3 BET 92 4-1.4 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 97 4-1.5 Inductively coupled plasma mass spectrometry (ICP-MS) 101 4-1.6 Fourier transform infrared spectroscopy (FTIR) 103 4-1.7 UV-visible spectrometry 104 4-1.8 X-ray photoelectron spectroscopy (XPS) 106 4-2 ACTIVITY TEST OF PHOTOCATALYSTS 112 4-3 PARAMETERS TEST OF PHOTOCATALYSTS 118 4-3.1 Effect of residence time 118 4-3.2 Effect of inlet concentration 121 4-3.3 Effect of relative humidity 124 4-3.4 Carbon recovery 127 4-4 KINETIC MODELS 130 4-4.1 Mars & van Krevelen Model 130 4-4.2 Langmuir-Hinshelwood Model 134 4-5 REACTION MECHANISM 141 CHAPTER 5 CONCLUSION 150 REFERENCE 153 APPENDIX 164 A. THE CALCULATION METHOD OF DOPING CONTENT 164 B. PREPARATION OF CALIBRATION CURVES 165 C. REACTION RATE CALCULATION 166 D. ABSOLUTE HUMIDITY AND RELATIVE HUMIDITY 169

    Akly, C., Chadik, P.A., Mazyck, D.W., Photocatalysis of gas-phase toluene using silica-titania composites: Performance of a novel catalyst immobilization technique suitable for large-scale applications. Applied Catalysis B-Environmental 99, 329-335, 2010.
    Ang, T.P., Law, J.Y., Han, Y.F., Preparation, Characterization of Sulfur-Doped Nanosized TiO2 and Photocatalytic Degradation of Methylene Blue Under Visible Light. Catalysis Letters 139, 77-84, 2010.
    Ao, CH., Lee, SC., Yu, JZ., Xu, JH., Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied Catalysis B: Environmental 54, 41-50, 2004.
    Arneth, A., Monson, R.K., Schurgers, G., Niinemets, U., Palmer, P.I., Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmospheric Chemistry and Physics 8, 4605-4620, 2008.
    Barton, J.W., Klasson, K.T., Koran, J.L. J.,Davison, B.H., Microbial removal of alkanes from odor treatment tchnologies in wastewater treatment plants. Environmrntal Science and tchnology 45, 1100-1106, 2010.
    Bau, S., Witschger, O., Gensdarmes, F., Rastoix, O., Thomas, D., A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols. Powder Technology 200, 190-201, 2010.
    Bayati, M.R., Moshfegh, A.Z., Golestani-Fard, F., Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Materials Letters 64, 2215-2218, 2010.
    Bêche, E., Charvin, P., Perarnau, D., Abanades, S., Flamant, G., Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surface and Interface Analysis 40, 264-267, 2008.
    Behpour, M., Atouf, V., Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation. Applied Surface Scuence 258, 6595-6601, 2012.
    Blake, D.M., Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air. National Renewable Energy Laboratory NREL/TP-510-31319, 2001.
    Brinker, J.C., Scherer, G.W., Sol-gel science- The physics and chemistry of sol-gel processing. Academic Press Inc. San Diego, 1990.
    Busca, G., Pistarino, C., Technologies for the abatement of sulphide compounds from gaseous streams: a comparative overview, Journal of Loss Prevention in the Process Industries 16, 363-371, 2003.
    Carp, O., Huisman, CL., Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 32, 33-177, 2004.
    Chang, C.H., 非均相反應觸媒特性與實效應用. 台灣復文興業股份有限公司, P58, 1996.
    Chang, F.T., Nian, K.J., Wang, B.C., Xie, S.Z., Lin, M.L., 排氣VOC控制案例. Jounral of Environmental engineering 20, 2, 2009.
    Chatterjee, D., Dasgupta, S., Rao, NN., Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Solar Energy Materinals and Solar Cells 90, 1013-1020, 2006.
    Chen, M.L., Liu, M.S., Using supercritical fiuld to prepara photocatalyst-Titaium dioixide for the degradation of chlorinated solvents. 2007.
    Christoforidis, K.C., Figueroa, S.J.A., Fernandez-Garcia, M., Iron-sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation. Applied Catalysis B-Environmrntal 117, 310-316, 2012.
    Choi, W.Y., Termin, A., Hoffmann, M.R., Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles. Angewandte Chemie-International Edition in English 33, 1091-1092, 1994.
    De Bo, J., Heyman, J., Vincke, J., Verstraete, W., Van Langenhove, H., Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite membrane bioreactor. Environmrntal Science and tchnology 37, 4228-4234, 2003.
    De Zwart, J.M.M., Kuenen, J.G., C-1-cycle of sulfur compounds. Biodegradation 3, 37-59, 1992.
    Debono, O., Thevenet, F., Gravejat, P., Hequet, V., Raillard, C., Le Coq, L., Locoge, N., Gas phase photocatalytic oxidation of decane at ppb levels: Removal kinetics, reaction intermediates and carbon mass balance. Journal of Photochemistry and Photobiology A-Chemistry 258, 17-29, 2013.
    Demeestere K., Dewulf, J., Ohno, T., Salgado P.H., Van Langenhove, H., Visible light mediated photocatalytic degradatioh of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental 61, 140-149, 2005a.
    Demeestere, K., Dewulf, J., De Witte, B., Van Langenhove, H., Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental 60, 93-106, 2005b.
    Du, JM., Zhao, GY., Shi, YF., HaoYang, Li, YX., Zhu, GG., Mao, YJ., Sa, RJ., Wang, WM., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity. Applied Surface Science 273, 278-286, 2013a.
    Du, JM., Chen, HJ., Yang, H., Sang, RR., Qian, YT., Li, YX., Zhu, GG., Mao, YJ., He, W., Kang, DJ., A facile sol-gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV-Vis irradiation. Microporous and Mesoporous Materisls 182, 87-94, 2013.
    Dupin, JC., Gonbeau, D., Vinatier, P., Levasseur, A., Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics 2, 1319-1324, 2000.
    Dziembaj, R., Molenda, M., Zaitz, MM., Chmielarz, L., Furczon, K., Correlation of electrical properties of nanometric copper-doped ceria materials (Ce1 − xCuxO2 − δ) with their catalytic activity in incineration of VOCs. Solid State Ionics 251, 18-22, 2013.
    Eckenfelder, W.W., Bowers, A.R., Roth, J.A. Chemical oxidation: technologies for the nineties, Gas-sloid heterogenois photocatalytix oxidation of volatile organics. P319, 1994.
    Frankenburg, W.G., Rideal, E.K., Komarewaky, V.I., Advances in catalysis and related subjects. Volume 7, 1955.
    Fu, XZ., Clark, LA., Zeltner, WA., Anderson, MA., Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Jonrnal of Photochemistry and Photobiology A-Chemistry 97, 181-186, 1996.
    Gangopadhyay, S., Frolov, D.D., Masunov, A.E., Seal, S., Structure and properties of cerium oxides in bulk and nanoparticulate forms. Journal of Alloys and Compounds 584, 199-208, 2014.
    Gomez, R., Bertin, V., Lopez, T., Schifter, I., Ferrat, G., Pt-Sn/Al2O3 sol-gel catalysts: Catalytic properties. Journal of Molecular Catalysis A-Chemistry 109, 55-66, 1996.
    Guenther, A., Hewitt, N.C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892, 1995.
    Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics 6, 3181-3210, 2006.
    Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M.N., Daniele, S., Photocatalytic degradation and mineralization of a malodorous compound (dimethyl disulfide) using a continuous flow reactor. Catalysis Today 122, 160-167, 2007.
    Hagen, J., Industrial catalysis-a practical approach. Wiley-VCH Weinheim, 1999.
    Hamal, D.B., Klabunde, K.J., Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science 311, 514-522, 2007.
    Harizanov, O, Ivanova, T, Harizanova, A, study of sol–gel TiO2 and TiO2–MnO obtained from a peptized solution. Materials Letters 49, 165-171, 2001.
    He, C., Yu, Y., Zhou, CH., Hu, XF., Structure and photocatalytic activities of Ag/TiO2 thin films. Journal of Inorganic Materials 17, 1025-1033, 2002.
    Hort, C., Gracy, S., Platel, V., Moynault, L., A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: Application at industrial scale. Waste Management 33, 18-25, 2013.
    Huang, L.Q., 化學動力學與反應設計下冊. 科技出版社, 120-123, 1993.
    Hunter, P., Oyama, S.T., Control of volatile organic compound emissions conventional and emerging technologies. John wiley & Sons Inc., New York, 279, 2000.
    Ivanova, T., Harizanova, A., Surtchev, M., Nenova, Z., Investigation of sol-gel derived thin films of titanium dioxide doped with vanadium oxide. Solar Energy Material and Solar Cells 76, 591-598, 2003.
    Jacoby, WA., Blake, DM., Fennell, JA., Boulter, JE., Vargo, LM., George, MC., Dolberg, SK., Heterogeneous photocatalysis for control of volatile organic compounds in indoor air. Journal of the Air and Waste Manangment Association 46, 891-898, 1996.
    Jarrige, J., Vervisch, P., Decomposition of gaseous sulfide compounds in air by pulsed corona discharge. Plasma Chemstry and Plasma Processing 27, 241-255, 2007.
    Jo, Wan K, Shin, Myeong H., Applicability of a continuous-flow system inner-coated with S-doped titania for the photocatalysis of dimethyl sulfide at low concentrations. Journal of environmental Management 91, 2059-2065, 2010.
    Jung, SM., Dupont, O., Grange, P., TiO2-SiO2 mixed oxide modified with H2SO4I. Characterization of the microstructure of metal oxide and sulfate. Applied Catalysis A-General 208, 393-401, 2001.
    Kanakidou, M., Seinfeld, JH., Pandis, SN., Barnes, I., Dentener, FJ., Facchini, MC., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, CJ., Swietlicki, E., Putaud, JP., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, GK., Winterhalter, R., Myhre, CEL., Tsigaridis, K., Vignati, E., Stephanou, EG., Wilson, J., Organic aerosol and global climatemodelling: a review. Atmospheric Chemistry and Physics 5, 1053-1123, 2005.
    Kartheuser, B., Costarramone, N., Pigot, T., Lacombe, S., NORMACAT project: normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination. Environmental Science and Pollution Research 19, 3763-3771, 2012.
    Klauson, D., Portjanskaya, E., Budarnaja, O., Krichevskaya, M., Preis, S., The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications 11, 715-720, 2010.
    Knox, A., An overview of incineration and EFW technology as applied to the management of municipal solid waste (MSW). University of Western Ontario, 2005.
    Korologos, C.A., Philippopoulos, C.J., Poulopoulos, S.G., The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment 45,7089-7095, 2011.
    Korologos, C.A., Nikolaki, M.D., Zerva, C.N., Philippopoulos, C.J., Poulopoulos, S.G., Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. Journal of Photochemistry and Photobiology A: Chemistry 244, 24-31, 2012.
    Kung, HH., Ko, EI., Preparation of oxide catalysts and catalyst supports - A review of recent advances. Chemical Enginerring Journal 64, 203-214, 1996.
    Le Cloirec, P., Les composés organiques volatils (COV) dans l'environnement. 734 p. Tec & Doc, Lavoisier, Paris, 1998.
    Legrand-Buscema, C., Malibert, C., Bach, S., Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 418, 79-84, 2002.
    Lewandoski, M., Ollis, DF., Photocatalytic oxidation of gas-phase aromatic contaminants. In Ramamurthy, V., Schnaze, KS., (eds) Molecular and supramolecular photochemistry 10, 249-282, 2003.
    Li, X., Luo, Q., An, J., Wang, D., The kinetics and activation energy of photocatalytic degradation of phenol by TiO2 and TiO2/ PANI photocatalyst under UV irradiation. Advanced Materials Research 430-432, 57-60, 2012.
    Li, W., Wu, D., Yu, YL., Zhang, P., Yuan, J., Cao, YQ., Cao, Y., Xu, JJ., Investigation on a novel ZnO/TiO2-B photocatalyst with enhanced visible photocatalytic activity. Physica E-low-dimensional Systems & Nanostructures 58, 118-123, 2014.
    Linsebigler, A.L., Lu, G., Yates, J.T., Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev 95, 735-758, 1995.
    Lin H.Y., Hung Y.M., The Study of Synthesis and Properties of Mesoporous SiO2. 2012.
    Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W., Su, Y., Ionic liquid-templeted synthesis of mesoporous CeO2-TiO2 nanoparticles and their enhanced photocatalytic activities under UV or nisible light. Journal of Photochemistry and Photobiolloy A: Chemistry 223, 157-164, 2011a.
    Liu, G., Sun, C., Smith, S.C., Wang, L., Lu, G.Q.M., Cheng, H.M., Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. Journal of Colloid and Interface Science 349, 477-483, 2010a.
    Liu, LJ., Yao, ZJ., Liu, B., Dong, L., Correlation of structural characteristics with catalytic performance of CuO/CexZr1-xO2 catalysts for NO reduction by CO. Journal of Catalysis 275, 45-60, 2010b.
    Liu, SX., Chen, XY., A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152, 48-55, 2008.
    Liu, SX., Qu, ZP., Han, XW., Sun, CL., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today 93-5, 877-884, 2004.
    Liu, S.Y., Tang, Q.L., Feng, Q.G., Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route. Applied Surface Science 257,5544–5551, 2011b.
    Liu, Y., Wang, H.Q., Wu, Z.B., Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides. Journal of Environmental Sciences-China 19, 1505-1509, 2007.
    Lv, K.L., Zuo, HS., Sun, J., Deng, KJ., Liu, SC., Li, XF., Wang, D.Y., (Bi, C and N) codoped TiO2 nanoparticles. Journal of Hazardous Materials 161, 396-401, 2009.
    Lu, L.D., 化工動力與化工熱力. 立功出版社, 1991.
    Madarász, J., Brăileanu, A., Crişan, M., Pokol, G., Comprehensive rvolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA–MS in air: part 2. precursor from thiourea and titanium(IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis 85, 549-556,2009.
    Mars, P., van Krevelen, D.W., Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science 3, 41-59, 1954.
    Mo, JH., Zhang, YP., Xu, QJ., Lamson, J.J., Zhao, RY., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246, 2009.
    Murakami, Y., Kenji, E., Nosaka, A.Y., Nosaka, Y., Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. Journal of Physical Chemistry B 110, 16808-16811, 2006.
    Nasir, M., Xi, ZH., Xing, MY., Zhang, JL., Chen, F., Tian, BZ., Bagwasi, S., Study of synergistic effect of Ce- and S- codoping on the enhancement of visible-light Pphotocatalytic activity of TiO2. Journal of Physical Chemistry C 117, 9520-9528, 2013.
    Nishijima, K., Ohtani, B., Yan, XL., Kamai, T., Chiyoya, T., Tsubota, T., Murakami, N, Ohno, T., Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-enhanced and N-enhanced TiO2 phoyocatalysys. Chemical Physics 339, 64-72, 2007.
    Nuria, G.G., José, A.A., Xavier, D., José, P., TiO2 deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide. Applied Catalysis B: Environmental 52, 69-77, 2004.
    Obee, T.N., Brown, R.T., TiO2 photocatalysis for indoor air applications - effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology 29, 1223-1231, 1995.
    Ohno, T, Akiyoshi, M, Umebayashi, T, Asai, K, Mitsui, T, Matsumura, M, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 265, 115-121, 2004.
    Peral, J., Domenech, X., Ollis, DF., Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology and Biotechnology 70, 117-140, 1997.
    Prousek, J., Advanced oxidation processes for water treatment. Photochemical processes. Chemicke Listy 90, 307-315, 1996.
    Qiao, L., Chen, J., Yang, X., Potential particulate pollution derived UV-induced degradation of odorous dimethyl sulfide. Journal of Environmental Sciences 23, 51-59, 2011.
    Rengifo-Herrera, J.A., Pierzchała, K., Sienkiewicz, A., Forró, L., Kiwi, J., Moser, J.E., Pulgarin, C., Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios, Journal of Physical Chemistry C 114, 2717-2723,2010.
    Sahle-Demessie, E., Devulapelli, V.G., Oxidation of methanol and total reduced sulfur compounds with ozone over V2O5/TiO2 catalyst: Effect of humidity. Applied Catalysis A-General 361, 72-80, 2009.
    Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., Exploiting the interparticle electron-transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol - chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A-chemistry 85, 247-255, 1995.
    Shao-You, L., Qun-Li, T., Qing-Ge, F., Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route., Applied Surface Science 257, 5544-5551, 2011.
    Silversmit, G., De Doncker, G., De Gryse, R., A mineral TiO2(001) anatase Crystal examined by XPS. Surface Science Spectra 9, 21-9, 2002.
    Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.M., Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B - Environmental 86, 159-165, 2009.
    Smet, E., Van Langenhove, H., Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation 9, 273-284, 1998a.
    Smet, E., VanLangehove, H., Verstraete, W., Long-term stability of a biofilter treating dimethyl sulphide. Applied Microbiology and Biotechnology 46, 191-196, 1996.
    Smet, E., Lens, P., Van Langenhove, H., Treatment of waste gases contaminated with odorous sulfur compounds. Cricital Reviews in Environmental Science and technology 28, 89-117, 1998b.
    Solsona, B., Garcia, T., Aylon, E., Dejoz, A.M., Vazquez, I., Agouram, S., Davies, T.E., Taylor, S.H., Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal 175, 271-278, 2011.
    Sologar, VS., Lu, ZJ., Allen, DG., Biofltration of concentrated mixtures of hydrogen sulfide and methanol. Environmental Progress 22, 129-136, 2003.
    Sonawane, RS., Hegde, SG., Dongare, MK., Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics 77, 744-750, 2003.
    Sonawane, RS., Kale, BB., Dongare, MK., Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel clip coating. Materials Chemistry and Physics 85, 52-57, 2004.
    Springer, A.M., Industrial environmental control: pulp and paper industry. TAPPI Press, Atlanta, GA, 1985.
    Stengl, V., Bakardjieva, S., Murafa, N., Preparation and photocatalytic activity of rara earth doped TiO2 nanoparticles. Materials Chemistry and Physics 114, 217-226, 2009.
    Tang, C.H., Chang, R.S., The study on the yield of hydroxyl radical and characteristics alteration of municipal wastewater by TiO2 catalytical electrode. 2007.
    Tang, F., Yang, X., A "deactivation" kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene. Building and Environment 56, 329-334, 2012.
    Taiwan Environmental Protection Administration (Taiwan EPA) Stationary pollution source control-Volatile organic compound controlled technologies introduction, 2012.
    Tompkins, D.T., Lawnicki, B.J., Zeltner, W.A., Anderson, M.A., Evaluation of photocatalysis for gas-phase air cleaning part 1: process, technical, and sizing considerations. ASHRAE Transactions 111, 60-84, 2005.
    Tong, TZ., Zhang, JL., Tian, BZ., Chen, F., He, D.N., Anpo, M., Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of Colloid and Interface Science 315, 382-388, 2007.
    Twigg, M.V., CATALYST HANDBOOK Wolfe Publishing Ltd, London, 1989.
    Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 63, 1909-1920, 2002.
    Vincent, G., Aluculesei, A., Parker, A., Fittschen, C., Zahraa, O., Marquaire, P.M., Direct detection of OH radicals and indirect detection of H2O2 molecules in the gas phase near a TiO2 photocatalyst using LIF. Journal of Physical Chemistry C 12,9115-9119, 2008.
    Vincent, G., Marquaire, P.M., Zahraa, O., Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials 161, 1173-1181, 2009.
    Vorontsov, A.V., Photocatalytic transformations of organic sulfur compounds and H2S Russian Chemical Reviews 77, 909-926, 2008.
    Wani, AH., Lau, AK., Branion, RMR., Biofiltration control of pulping odors-hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species. Journal of Chemical Technology and Biotechnology 74, 9-16, 1999.
    Wang, C., Hu, QQ., Huang, JQ., Wu, L., Deng, ZH., Liu, ZG., Liu, Y., Cao, YG., Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film. Applied Surgace Science 283, 188-192, 2013a.
    Wang, J., Jin, LM., Gao, JH., Shi, JW., Zhao, YL., Liu, SX., Jin, TS., Bai, ZP., Wu, CY., Investigation of speciated VOC in gasoline vehicular exhaust under ECE and EUDC test cycles. Science of the Total Environment 445, 110-116, 2013b.
    Wang, S.B., Ang, H.M., Tade, M.O., Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33, 694-705, 2007.
    Wang, Y., Wang, Y., Meng, YL., Ding, HM., Shan, YK., Zhao, X., Tang, XZ., A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. Journal of Physical Chemistry C 112, 6620-6626, 2008.
    Wang, Y.X., Huang, L., Sun, L.C., Xie, S.Y., Xu, G.L., Chen, S.R., Xu, Y.F., Li, J.T., Chou, S.L., Dou, S.X., Sun, S.G., Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. Journal of Materials Chemistry 22, 4744-4750, 2012.
    Wang, ZM., Liu, J., Dai, YC., Bong, WY., Zhang, DC., Chen JM., Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: kinetic and mechanistic study. Industrial and Engineering Chemistry Research (I&EC) 50, 7977-7984, 2011.
    Wijngaarden, R.J., Kronberg, A., Westerterp, K.R., Industrial catalysis-optimizing catalysts and processes. Wiley-VCH Weinheim, 1998.
    Xiang, QJ., Yu, JG., Jaroniec, M., Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Physical Chemistry Chemical Physics 13, 4853-4861, 2011.
    Xie, JM., Jiang, DL., Chen, M., Li, D., Zhu, JJ., Lu, XM., Yan, CH., Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 372, 107-114, 2010.
    Xu, J.H., Li, J.X., Dai, W.L., Cao, Y., Li, HX., Fan, KN., Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Applied Catalysis B-Envionmental 79, 72-80, 2008.
    Xu, YH., Chen, HR., Zeng, ZX., Lei, B., Investigation on mechanism of photocatalytic activity enhancement of nanometer cerium-doped titania. Applied Surface Science 252, 8565-8570, 2006.
    Yan, W., Chen, B., Mahurin, S.M., Schwartz, V., Mullins, D.R., Lupini, A.R., Pennycook, S.J., Dai, S., Overbury, S.H., Preparation and comparison od supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B 109, 10676-10685, 2005.
    Yang, QJ., Xie, C., Xu, ZL., Gao, ZM., Du, YG., Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. Journal of Physical Chemistry B 109, 5554-5560, 2005.
    Yang, R., Zhang, Y., Xu, Q., Mo, J., A mass transfer based method for measuring the reaction coefficients of a photocatalyst. Atmospheric Environment 41, 1221-1229, 2007.
    Yu, CL., Cai, DJ., Yang, K., Yu, J.C., Zhou, Y., Fan, C.F., 2010. Sol-gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of SolidS 71, 1337-1343, 2010.
    Yu, K.P., Lee, G.W.M., Huang, Enhancement Effect of UV/O3 on the Effectiveness of Photocatalytic Oxidation for Removing Indoor Volatile Organic Compounds. 2006.
    Yu, K.P., Lee, G.W.M., Huang, W.M., Wu, C., Yang, S., The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmos Environ 40, 375-385, 2006b.
    Zaleska, A., Górska, P., Sobczak, J.W., Hupka, J., Thioacetamide and thiourea impact on visible light activity of TiO2. Applied Catalysis B: Environmental 76, 1-8, 2007.
    Zhang, WG., Liu, WM., Wang, CT., Tribological behavior of sol-gel TiO2 films on glass. Wear 253, 377-384, 2002.
    Zhang, Y.,Yuwono, A.H., Wang, J., Li J., Enhanced photocatalysis by doping cerium into mesoporous titania thin films. Journal of Physical Chemistry C 113, 21406-21412, 2009a.
    Zhang, Y., Shen, Y., Gu, F., Wu, M.M., Xie, Y., Zhang, J.C., Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science 256, 85-89, 2009b.
    Zhong, LX., Haghighat, F., Blondeau, P., Kozinski, J., Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications. Building and Environment 45, 2689-2697 ,2010a.
    Zhong, J.B., Ma, D., He, X.Y., Li, J.Z., Chen, Y.Q., Preparation, characterization and photocatalytic performance of TiO2/CexZr1-xO2 toward the oxidation of gaseous benzene. Applied Surface Science 256, 2859-2862, 2010b.
    Zhou, M.H., Yu, J.G., Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. Journal of Hazardous Materials 152, 1229-1236, 2008.
    Zhu, Y.F., Zhang, L., Yao, W.Q., Cao, L. L., The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor. Applied Surface Science 158, 32-37, 2000.

    下載圖示 校內:2019-08-04公開
    校外:2019-08-04公開
    QR CODE