| 研究生: |
陳志誠 Chen, Jhih-Cheng |
|---|---|
| 論文名稱: |
發展低度和高度子宮內膜基質惡性肉瘤融合基因檢驗 The development of a fusion gene test for low-grade and high-grade endometrial stromal sarcoma |
| 指導教授: |
何中良
Ho, Chung-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 子宮肉瘤 、子宮內膜基質惡性肉瘤(ESS) 、融合基因 、分子檢測 、人造融合基因質體 |
| 外文關鍵詞: | Uterine sarcoma, Endometrial stromal sarcoma (ESS), Fusion gene, Molecular testing, Artificial fusion constructs |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮內膜基質惡性肉瘤是源自於子宮內膜基質的腫瘤,根據2014年世界衛生組織(WHO)分類將子宮內膜基質瘤(Endometrial stromal tumor; EST)分為四個種類:子宮內膜基質結節(ESN)、低度子宮內膜基質肉瘤(LG-ESS)、高度子宮內膜基質肉瘤(HG-ESS)以及未分化的子宮肉瘤(UUS)。低度和高度子宮內膜基質肉瘤(ESS)在子宮惡性腫瘤中很少見,不到全部子宮惡性腫瘤的1%。ESN常屬於良性腫瘤,而ESS則是屬於惡性的腫瘤,但長久以來LG-ESS以及ESN在組織學型態上很相似不易單靠型態去區分兩者。而在ESS中LG-ESS和HG-ESS組織病理學的異質性,僅憑形態很難診斷區分這些腫瘤,因此若能開發出分子檢測的方式協助ESS的診斷,將會是一大利器。目前已有研究鑑定出七種融合基因與ESS相關,其中 六種屬於LG-ESS,分別為JAZF1-SUZ12、JAZF1-PHF1、EPC1-PHF1、MEAF6-PHF1、ZC3H7B-BCOR和MBTD1-CXorf67;而另外一種YWHAE-NUTM2A/B則是屬於HG-ESS。由於子宮內膜基質肉瘤非常罕見,因此開發分子檢測方法首先會面臨到無可用於檢測七種融合基因之RT-PCR陽性對照組。有鑑於此,在本研究中,我們開發了上述七種融合基因的分子檢測方法,以克隆(Clone)的方式,為七種融合基因製作了人造融合基因質體,並為融合基因分別設計了診斷用引子。同時,我們也收錄了來自成功大學附設醫院的12個病患,將診斷用引子實際應用於臨床檢體之檢測。12個病患中有5個病患使用我們的檢測方法測出融合基因型,且經過定序驗證,結果與先前的研究相近。ESS中最常見的融合基因型為JAZF1-SUZ12,其次為JAZF1-PHF1融合基因型,在5例陽性的病患中前者有3例,而後者則有1例,另外我們還鑑別出了1例YWHAE-NUTM2A/B的HG-ESS。而我們所建立的檢測ESS融合基因的模式將來也可以應用於檢測其他融合基因。
The World Health Organization (WHO) has classified endometrial stromal sarcoma into two categories as low-grade endometrial stromal sarcoma (LG-ESS) and high-grade endometrial stromal sarcoma (HG-ESS) in 2014. Both low-grade and high-grade endometrial stromal sarcoma (ESS) are not common in uterine malignancies, which are less than 1 percent of uterine malignancy. Due to the heterogeneous histopathology of LG-ESS and HG-ESS, these tumors are not easily to diagnose only by morphology. Molecular testing is gaining more and more significant for ESS diagnosis. According to previous literature, 7 types of fusion genes have been identified; 6 belongs to low-grade ESS (JAZF1-SUZ12, ZC3H7B-BCOR, JAZF1/PHF1, EPC1/PHF1, MEAF6/PHF1, and MBTD1-CXorf67) and 1 belongs to high-grade ESS (YWHAE/NUTM2A/B). Since the endometrial stromal sarcoma are very rare, there was no positive control material available from tumor tissues for the development of all 7 RT-PCR tests. Therefore, we made artificial fusion constructs for each 7 fusion genes and design diagnostic primer pairs for these fusion genes. In our study, we used primer pairs to diagnose clinical specimens and our twelve patients are all from National Cheng Kung University Hospital (NCKUH). The detecting method which we had developed to detect ESS fusion gene can also be applied to other fusion genes in the future.
1. Ashraf-Ganjoei, T., et al., Low grade endometrial stromal sarcoma of uterine corpus, a clinico-pathological and survey study in 14 cases. World J Surg Oncol, 2006. 4: p. 50.
2. Chang, K.L., et al., Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol, 1990. 14(5): p. 415-38.
3. Thiel, F.C. and S. Halmen, Low-Grade Endometrial Stromal Sarcoma - a Review. Oncol Res Treat, 2018. 41(11): p. 687-692.
4. Wang, F., et al., Clinicopathologic correlation of endometrial stromal sarcomas: a retrospective study of 42 cases. Translational Cancer Research, 2018. 7(4): p. 871-878.
5. Subbaraya, S., S.S. Murthy, and G.S. Devi, Immunohistochemical and Molecular Characterization of Endometrial Stromal Sarcomas. Clin Pathol, 2020. 13: p. 2632010X20916736.
6. Chang, B., et al., [Endometrial stromal sarcoma: morphologic features and detection of JAZF1-SUZ12 and YWHAE FAM22 fusion genes]. Zhonghua Bing Li Xue Za Zhi, 2016. 45(5): p. 308-13.
7. Lee, C.H., et al., 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A, 2012. 109(3): p. 929-34.
8. Lee, C.H., et al., The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol, 2012. 36(5): p. 641-53.
9. Halbwedl, I., et al., Chromosomal alterations in low-grade endometrial stromal sarcoma and undifferentiated endometrial sarcoma as detected by comparative genomic hybridization. Gynecol Oncol, 2005. 97(2): p. 582-7.
10. Chiang, S. and E. Oliva, Cytogenetic and molecular aberrations in endometrial stromal tumors. Hum Pathol, 2011. 42(5): p. 609-17.
11. Mitelman, F., B. Johansson, and F. Mertens, The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer, 2007. 7(4): p. 233-45.
12. Xu, X., et al., Double-hit and triple-hit lymphomas arising from follicular lymphoma following acquisition of MYC: report of two cases and literature review. Int J Clin Exp Pathol, 2013. 6(4): p. 788-94.
13. Shaw, A.T., et al., Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol, 2011. 12(11): p. 1004-12.
14. Kumar-Sinha, C., S. Kalyana-Sundaram, and A.M. Chinnaiyan, Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med, 2015. 7: p. 129.
15. Druker, B.J., Imatinib as a paradigm of targeted therapies. Adv Cancer Res, 2004. 91: p. 1-30.
16. Nucci, M.R., et al., Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol, 2007. 31(1): p. 65-70.
17. Micci, F., et al., Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet, 2003. 144(2): p. 119-24.
18. Koontz, J.I., et al., Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6348-53.
19. Hrzenjak, A., JAZF1/SUZ12 gene fusion in endometrial stromal sarcomas. Orphanet J Rare Dis, 2016. 11: p. 15.
20. Croce, S., et al., YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Mod Pathol, 2013. 26(10): p. 1390-400.
21. Chiang, S., et al., Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol, 2011. 35(9): p. 1364-72.
22. Micci, F., et al., Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res, 2006. 66(1): p. 107-12.
23. Panagopoulos, I., et al., Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One, 2012. 7(6): p. e39354.
24. Micci, F., et al., MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett, 2014. 347(1): p. 75-8.
25. Panagopoulos, I., et al., Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer, 2013. 52(7): p. 610-8.
26. Dewaele, B., et al., Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer, 2014. 134(5): p. 1112-22.
27. Pauwels, P., et al., Cytogenetics revealing the diagnosis in a metastatic endometrial stromal sarcoma. Histopathology, 1996. 29(1): p. 84-7.
28. Dal Cin, P., et al., Endometrial stromal sarcoma t(7;17)(p15-21;q12-21) is a nonrandom chromosome change. Cancer Genet Cytogenet, 1992. 63(1): p. 43-6.
29. Lee, C.H. and M.R. Nucci, Endometrial stromal sarcoma--the new genetic paradigm. Histopathology, 2015. 67(1): p. 1-19.
30. Stewart, C.J., et al., Evaluation of fluorescence in-situ hybridization in monomorphic endometrial stromal neoplasms and their histological mimics: a review of 49 cases. Histopathology, 2014. 65(4): p. 473-82.
31. Micci, F., et al., Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer, 2017. 56(12): p. 841-845.
32. Hennig, Y., et al., A third case of a low-grade endometrial stromal sarcoma with a t(7;17)(p14 approximately 21;q11.2 approximately 21). Cancer Genet Cytogenet, 1997. 98(1): p. 84-6.
33. Nakajima, T., et al., TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res, 2004. 32(14): p. 4194-204.
34. Kuzmichev, A., et al., Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev, 2002. 16(22): p. 2893-905.
35. Cao, R., et al., Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002. 298(5595): p. 1039-43.
36. Birve, A., et al., Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development, 2001. 128(17): p. 3371-9.
37. Weinmann, A.S., et al., Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol, 2001. 21(20): p. 6820-32.
38. Shimono, Y., et al., RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem, 2000. 275(50): p. 39411-9.
39. Hong, Z., et al., A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res, 2008. 36(9): p. 2939-47.
40. Eryilmaz, J., et al., Structural studies of a four-MBT repeat protein MBTD1. PLoS One, 2009. 4(10): p. e7274.
41. Ku, M., et al., Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet, 2008. 4(10): p. e1000242.
42. Astolfi, A., et al., BCOR involvement in cancer. Epigenomics, 2019. 11(7): p. 835-855.
43. Huynh, K.D., et al., BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev, 2000. 14(14): p. 1810-23.
44. Luk, S.C., et al., Assignment of the human 14-3-3 epsilon isoform (YWHAE) to human chromosome 17p13 by in situ hybridization. Cytogenet Cell Genet, 1997. 78(2): p. 105-6.
校內:2025-08-28公開