簡易檢索 / 詳目顯示

研究生: 廖柏維
Liao, Bo-Wei
論文名稱: 合成中孔洞金屬矽酸鹽及碳材作為觸媒催化有機反應之研究
Synthesis of Mesoporous Metal-Silicates and -Carbons as Catalysts of Organic Reactions
指導教授: 林弘萍
Lin, Hong-Ping
共同指導: 蔡福裕
Tsai, Fu-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 195
中文關鍵詞: 綠色化學中孔洞材料菱殼碳銅矽酸鹽材料催化硝基還原A3偶聯反應點擊反應
外文關鍵詞: green chemistry, mesoporous materials, water-chestnut-shell biochar (WCSB), copper silicate material, catalysis, nitroarene reduction, A3 coupling reaction, click reaction
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究方向以綠色製程且兼具回收循環機制的低成本方式,合成中孔洞材料:以農業廢棄物-菱角殼作為碳源,透過簡易物理混合法,不需使用有機溶劑,即可得高比表面積之菱殼碳材;以工廠廢水作為銅源,將前驅物離子溶液與矽酸鈉混合後,再以鹼源調整使其共同沉澱,合成出高比表面積在400 m2/g以上之CuO@SiO2孔洞材料,並使用自行合成之綠色中孔洞材料進行有機催化反應。
    第一單元為使用高含氮量菱殼碳,其比表面積高達1284 m2/g,可在有機溶劑中高效還原硝基化合物得到多種胺類衍生物,反應條件溫和、官能基耐受性佳、觸媒使用量極低且非常環保,亦可進行公克級反應,具有工業化之潛力。
    第二單元使用菱殼碳作為載體,使用沉積沉澱法擔載鐵金屬,合成出Fe2O3@C觸媒進行A3偶聯反應,可在不使用溶劑之條件下催化醛、胺及末端炔在溫和條件下合成出丙炔胺衍生物。
    第三單元則是使用共沉澱法將銅廢液與水玻璃加入鹼源,在pH值 = 8.5環境中沉澱出來,以合成出CuO@SiO2觸媒,其分散性極佳,比表面積可達400 m2/g以上,可在水相下將疊氮化合物與末端炔高效合成出一系列1,2,3-三唑衍生物,其反應條件溫和、高產率、催化量低且觸媒可使用五次以上,觸媒仍保持高度催化活性,符合綠色化學要求。

    In this study, water-chestnut-shell biochar (WCSB) was used as the carbon source to synthesize multiporous carbons (MPCs) via a simple and eco-friendly physical blending method. The experimental results showed that the MPCs had a high surface area of ~1600 m2/g. The copper silicate is made from co-precipitation method, the N2 adsorption-desorption isotherms showed the occurrence of capillary condensation at P/P0 values in the range of 0.4 to 0.5. Hence, the copper silicate materials were inferred to have a meso-structure. In addition, the specific surface area exceeded 500 m2/g.
    The N-rich MPC process high catalytic activity to reduce nitroarene to amine compounds under mild conditions with high yield, especially, the nitroarene ring bearing electron-withdrawing group on para-position and heterocycle system. The Fe2O3@C catalyst process high catalytic activity to coupling of aldehyde, secondary amine, alkyne without solvent under mild conditions with good functional tolerance to gain propargylamine products with moderate yield. The copper silicate also process high catalytic activity to catalyze azide and alkyne compounds in water with very high yield and good functional tolerance.

    摘要 ii SUMMARY iii 誌謝 ix 目錄 x 表目錄 xvi 圖目錄 xvii 第一單元 1 第一章 緒論 1 1.1 研究動機 1 1.2 孔洞材料簡介 2 1.3 多孔洞碳材 (Porous Carbon) 3 1.3.1 多孔洞碳材製備 4 1.3.2 模板法 (Templating Method) 6 1.3.3 高分子混摻 (Polymer Blend) 7 1.4 氮摻雜多孔洞碳材 8 1.4.1 摻雜氮原子之碳材結構 9 1.4.2 合成氮摻雜碳材 10 1.5 觸媒合成方法 11 1.6 胺類衍生物的應用 12 1.6.1 天然物中的胺類衍生物 12 1.6.2 胺類衍生物的相關應用 13 1.7 還原芳香硝基化合物合成胺類之相關研究 15 1.7.1 簡介 15 1.7.2 貴金屬催化硝基還原反應 16 1.7.3 非貴金屬催化硝基還原反應 19 1.7.4 非金屬催化硝基還原反應 23 第二章 實驗部分 26 2.1 實驗儀器 26 2.1.1 氣相層析儀 (Gas Chromatography, GC) 26 2.1.2 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 26 2.1.3 熔點測定儀 (Melting Point Apparatus) 27 2.1.4 高解析質譜儀 (High Resolution Mass Spectrometry, HRMS) 27 2.1.5 熱重分析儀 (Thermogravimetric analysis, TGA) 27 2.1.6 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 28 2.1.7 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 29 2.1.8 氮氣等溫吸/脫附儀 (N2 Adsorption/Desorption Isotherm) 29 2.1.9 X-射線粉末繞射儀 (Powder X-ray Diffraction, PXRD) 34 2.1.10 能量色散光譜儀 (Energy Dispersive Spectroscopy, EDS) 35 2.1.11 元素分析儀 (Elemental Analyzer, EA) 35 2.1.12 原子吸收光譜儀 (Atomic Absorption Spectroscopy, AA) 36 2.2 實驗藥品 36 2.3 試劑純化 36 2.4 實驗步驟與光譜數據 37 2.4.1 製備高含氮量菱殼碳 37 2.4.2 硝基起始物之合成步驟與光譜數據 38 2.4.3 高含氮量菱殼碳還原硝基化合物反應之實驗步驟 39 2.4.4 高含氮量菱殼碳觸媒再使用之實驗步驟 40 2.4.5 胺基衍生物之光譜數據 41 第三章 結果與討論 46 3.1 鑑定高含氮量菱殼碳觸媒 46 3.2 以高含氮量菱殼碳還原硝基化合物之結果與討論 48 3.2.1 還原硝基化合物之最佳化條件探討 48 3.2.2 胺基衍生物之結果與討論 50 3.3 高含氮量菱殼碳觸媒再使用之結果與討論 54 3.4 反應機構推論 55 第四章 結論 56 參考文獻 57 第二單元 61 第一章 緒論 61 1.1 研究動機 61 1.2 丙炔胺衍生物的應用 62 1.2.1 丙炔胺衍生物之藥物應用 62 1.2.2 丙炔胺衍生物作為有機合成前軀物 63 1.3 合成丙炔胺衍生物之相關研究 64 1.3.1 簡介 64 1.3.2 貴金屬催化A3偶聯反應 65 1.3.3 非貴金屬催化A3偶聯反應 67 1.3.4 非金屬催化A3偶聯反應 72 第二章 實驗部分 73 2.1 實驗步驟與光譜數據 73 2.1.1 製備含鐵金屬中孔洞碳材 73 2.1.2 含鐵金屬中孔洞碳材催化A3 偶聯反應之實驗步驟 74 2.1.3 含鐵金屬中孔洞碳材觸媒再使用之實驗步驟 75 2.1.4 丙炔胺衍生物之光譜鑑定結構 76 第三章 結果與討論 83 3.1 鑑定含鐵中孔洞碳材觸媒 83 3.2 含鐵中孔洞碳材催化A3偶聯反應之結果與討論 85 3.2.1 A3偶聯反應之最佳化條件探討 85 3.2.2 丙炔胺衍生物之結果與討論 87 3.3 高含氮量菱殼碳觸媒再使用之結果與討論 91 3.4 反應機構推論 92 第四章 結論 93 參考文獻 94 第三單元 97 第一章 緒論 97 1.1 研究動機 97 1.2 中孔洞氧化矽材料 98 1.2.1 簡介 98 1.2.2 孔洞氧化矽材料的研究範疇 99 1.2.3 界面活性劑 (Surfactant) 101 1.2.4 微胞 (Micelle) 102 1.2.5 矽酸鹽 (Silicate) 105 1.3 1,2,3-三唑衍生物的應用 107 1.3.1 探討1,2,3-三唑衍生物之生物活性 107 1.3.2 探討1,2,3-三唑衍生物之藥物應用 107 1.4 點擊化學 (Click Chemistry) 109 1.5 合成1,2,3-三唑衍生物之相關研究 110 1.5.1 簡介 110 1.5.2 銅催化炔烴疊氮環加成反應 (CuAAC) 111 1.5.3 其他過渡金屬催化 118 第二章 實驗部分 121 2.1 實驗步驟與光譜數據 121 2.1.1 製備CuO@SiO2觸媒 121 2.1.2 疊氮起始物之合成步驟與光譜數據 122 2.1.3 CuO@SiO2觸媒催化環加成反應合成1,2,3-三唑衍生物 123 2.1.4 CuO@SiO2觸媒再使用之實驗步驟 124 2.1.5 1,2,3-三唑衍生物之光譜數據 125 第三章 結果與討論 133 3.1 鑑定CuO@SiO2觸媒 133 3.2 CuO@SiO2催化環加成反應之結果與討論 138 3.2.1 CuO@SiO2催化環加成反應之最佳化條件探討 138 3.2.2 1,2,3-三唑衍生物之結果與討論 140 3.3 CuO@SiO2觸媒再使用之結果與討論 144 3.4 反應機構推論 145 第四章 結論 146 參考文獻 147 附 錄 150 胺類衍生物之1H 及13C NMR 光譜圖 150 附 錄 165 丙炔胺衍生物之1H 及13C NMR 光譜圖 165 附 錄 180 1,2,3-三唑衍生物之1H 及13C NMR 光譜圖 180

    第一單元
    [1] K. S. W. Sing, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol & T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli & J. S. Beck, Nature 1992, 359, 710.
    [3] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins & J. L. Schlenker, J. Am, Chem. Soc. 1992, 114, 10834.
    [4] C. Liang, Z. Li & S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696.
    [5] C. R. Bansal, J. B. Donnet & F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    [6] H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    [7] J. Lee, S. Yoon, T. Hyeon, S. M. Oha & K. B. Kimb, Chem. Commun. 1999, 21, 2177.
    [8] H. Zhou, S. Zhu, M. Hibino, I. Honma & M. Ichihara, Adv. Mater. 2003, 15, 2107.
    [9] H. Huang, J. Zhang, Y. Zhang, S. Lian & Y. Liu, Solid State Sci. 2013, 24, 115.
    [10] E. P. Mayoral, I. Matos, M. Bernardo & I. M. Fonseca, Catalysts 2019, 9, 133.
    [11] H. Marsh & F. R. Reinoso, Activated Carbon; Elsevier: Kidlington, UK, 2006.
    [12] M. A. Yahya, Z. A. Qodah & C. W. Z. Ngah, Renew. Sust. Energ. Rev., 2015, 46, 218.
    [13] R. A. Canales-Flores & F. Prieto-Garc, Chem. Biodiversity 2016, 13, 261
    [14] F. Rodríguez-Reinoso, M. Molina-Sabio & M. T. González, Carbon 1995, 33, 15.
    [15] A. Jain, R. Balasubramanian & M. P. Srinivasan, Chem. Eng. Technol. 2016, 283, 789.
    [16] W. Ao, J. Fu, X. Mao, Q. H. Kang, C. M. Ran, Y. Liu, H. D. Zhang, Z. P. Gao, J. Lia, G. Q. Liu & J. J. Dai, Renew. Sust. Energ. Rev. 2018, 92, 958.
    [17] J. H. Knox, B. Kaur & G. R. Millward, J. Chromatogr. A 1986, 352, 3.
    [18] R. Ryoo, S. H. Joo & S. Jun, J. Phys. Chem. B 1999, 103, 7743.
    [19] R. Ryoo, S. H. Joo, M. Kruk & M. Jaroniec, Adv. Mater. 2001, 13, 677.
    [20] Y. L. Cao, S. J. Mao, M. M. Li, Y. Q. Chen & Y. Wang, ACS Catal. 2017, 7, 8090.
    [21] I. Y. Jeon, H. J. Noh & J. B. Baek, Chem. Asian J. 2020, 15, 2282.
    [22] W. M. Chen, M. Wan, Q. Liu, X. Q. Xiong, F. Q. Yu & Y. H. Huang, Small Methods 2018, 3, 1800323.
    [23] J. P. Paraknowitsch & A. Thomas, Energy Environ. Sci. 2013, 6, 2839.
    [24] E. K. Rideal & W. M. Wright, J. Chem. Soc. 1926, 129, 1813.
    [25] J. X. Wu, Z. Y. Pan, Y. Zhang, B. J. Wang & H. S. Peng, J. Mater. Chem. A 2018, 6, 12932.
    [26] Y. Chi, T. Y. Chou, Y. J. Wang & S. F. Huang, Organometallics 2004, 23, 95.
    [27] F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias & G. N. R. Filho, Microporous Mesoporous Mater. 2008, 113, 562.
    [28] J. A. Schwarz, Chem. Rev. 1995, 95, 477.
    [29] M. Haruta, N. Yamada, T. Kobayashi & S. Iijima, J. Catal 1989, 115, 301.
    [30] R. Nares, J. Ramı´rez, A. G. Alejandre, C. Louis & T. Klimova, J. Phys. Chem. B 2002, 106, 13287.
    [31] T. Kahl, K. W. Schröder, F. R. Lawrence, W. J. Marshall, H, Höke, R. Jäckh, Aniline, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
    [32] J. D. Robert & M. C. Caserio, Basic Principles of Organic Chemistry, second edition. W. A. Benjamin, Inc., Menlo Park, CA. 1977.
    [33] J. Bonjoch & D. Sole, Chem. Rev. 2000, 100, 3455.
    [34] J. Teske, J. P. Weller, U. V. Albrecht & A. Fieguth, J. Anal. Toxicol. 2011, 35, 248.
    [35] T. Jonssonl, C. B. Christensen, H. Jordening & C. Frelund, Pharmacol. Toxicol. 1988, 62, 203.
    [36] C. Straube, S. Derry, K.C. Jackson, P. J. Wiffen, R. F. Bell, S. Strassels & S. Straube, Cochrane Database Syst. Rev. 2014, 9, 1.
    [37] E. B. Esu1, E. E. Effa, O. N Opie & M. M. Meremikwu, Cochrane Database Syst. Rev. 2019, 6, 1.
    [38] N. J. Connors & R. S. Hoffman, J. Pharmacol. Exp. Ther. 2013, 347, 251.
    [39] J. J. Walline, K. Lindsley, S. S. Vedula, S. A. Cotter, D. O. Mutti & J. D. Twelker, Cochrane Database Syst. Rev. 2011, 12, 1.
    [40] E. Poleszak, A. Szopa, E. Wyska, W. K. Koch, A. Serefko, S. Wosko, K. Bogatko, A. Wrobel & P. Wlaz, Pharmacol. Rep. 2016, 68, 56.
    [41] A. Bafana, S. S. Devi & T. Chakrabarti, Environ. Rev. 2011, 19, 350.
    [42] T. Farooqui, Neurochem. Int. 2013, 62, 122.
    [43] A. Hameed, S. Javed , R. Noreen, T. Huma, S. Iqbal, H. Umbreen, T. Gulzar & T. Farooq, Molecules 2017, 22, 1691.
    [44] P. F. Vogt & J. J. Gerulis, Amines, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
    [45] G. Booth, Nitro Compounds, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
    [46] J. Tuteja, S. Nishimura & K. Ebitani, RSC Adv. 2014, 4, 38241.
    [47] F. Li, B. Frett & H. Y. Li, Synlett 2014, 25, 1403.
    [48] F. Zhao,Y. Ikushima & M. Arai, J. Catal 2004, 224, 479.
    [49] R. F. Nie, J .H. Wang, L.Wang, Y. Qin, P. Chen & Z. Y. Hou, Carbon 2012, 50, 586.
    [50] J. Rahimi, R. T. Ledari, M. Niksefat & A. Maleki, Catal. Commun. 2020, 134, 105850.
    [51] W. S. Guo, R. Pleixats & A. Shafir, Chem. Asian J. 2015, 10, 2437.
    [52] H. K. Kadam & S. G. Tilve, RSC Adv. 2012, 2, 6057.
    [53] C. Tamuly, I. Saikia, M. Hazarikaa & M. R. Dasb, RSC Adv. 2014, 4, 53229.
    [54] D. Balcom & A. Furst, J. Am. Chem. Soc. 1953, 75, 4334.
    [55] S. Payra & S. Banerjee, ChemistrySelect 2019, 4, 9556.
    [56] F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M. M. Pohl, J. Radnik, A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner & M. Beller, Nat. Chem. 2013, 5, 537.
    [57] P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv & Z. H. Zhang, Sci. Adv. 2017, 3, e1601945.
    [58] G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar & M. Beller, J. Am. Chem. Soc. 2011, 133, 12875.
    [59] R. V. Jagadeesh, T. Stemmler, A. E. Surkus, H. Junge, K. Junge & M. Beller, Nat. Protoc. 2015, 10, 548.
    [60] X. K. Kong, Z. Y. Sun, M. Chen, C. L. Chen & Q. W. Chen, Energy Environ. Sci. 2013, 6, 3260.
    [61] F. Yang, C. Chi, C. X. Wang, Y. Wang & Y. F. Li, Green Chem. 2016, 18, 4254.
    [62] S. C. Wu, G. D. Wen, J. Wang, J. F. Rong, B. N. Zong, R. Schlöglc & D. S. Su, Catal. Sci. Technol. 2014, 4, 4183.
    [63] K. S. W. Sing, Pure & Appl. Chem. 1985, 57, 603.
    [64] 潘正邦 (2020)。以菱殼炭合成高比表面積之多重孔洞碳材應用於超級電容、電容脫鹽 與氧氣還原反應。國立成功大學化學系研究所碩士論文,臺南市。取自 https://hdl.handle.net/11296/u7ej9m
    [65] K. Motoshima, M. Ishikawa, Y. Hashimoto & K. Sugita, Bioorg. Med. Chem. 2011, 19, 3156.
    [66] J. J. Niu, P. R.Guo, J. T. Kang, Z. G. Li, J. W. Xu & S. J. Hu, J. Org. Chem. 2009, 74, 5075.
    [67] Y. Li, X. H. Zhu, F.Meng & Y. Q. Wan, Tetrahedron 2011, 67, 5450.
    [68] H. H. Rao, H. Fu,Y. Y. Jiang & Y. F. Zhao, Angew. Chem. Int. Ed. 2009, 48, 1114.
    [69] Y. Motoyama, K. Kamo & H. Nagashima, Org. Lett. 2009, 11, 1345.
    [70] Z. X. Chen,Y. W. Jiang, L. Zhang, Y. L. Guo & D. W. Ma, J. Am. Chem. Soc. 2019, 141, 3541.
    [71] G. D. Vo & J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
    [72] H. J. Xu, Y. F. Liang, Z. Y. Cai, H. X. Qi, C. Y. Yang & Y. S. Feng, J. Org. Chem. 2011, 76, 2296
    [73] V. Dichiarante, A. Salvaneschi, S. Protti, D. Dondi, M. Fagnoni & A. Albini, J. Am. Chem. Soc. 2007, 129, 15919.
    [74] S. C. Lin, Y. H. Liu, S. M. Peng & S. T. Liu, Mol. Catal. 2019, 466, 46.
    [75] Z. A. Hua, J. J. Zhou, Y. J. Ai, L. Liu, L. Qi, R. H. Jiang, H. J. Bao, J. T. Wang, J. S. Hua, H. B. Sun & Q. L. Liang, J. Catal 2018, 368, 20.
    [76] Y. Q. Yang, Z. Chen & Y. Rao, Chem. Commun. 2014, 50, 15037.
    [77] G. Vijaykumar & S. K. Mandal, Dalton Trans. 2016, 45, 7421.
    [78] J. Choy, S. J. Figueroa, L. Jiang & P. Wagner, Synth. Commun. 2008, 38, 3840.
    [79] J. W. Larsen, M. Freund1, K. Y. Kim, M. Sidovar & J. L. Stuart, Carbon 2000, 38, 655.
    [80] C. J. Liao, B. Liu, Q. Chi & Z. H. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 44421.
    第二單元
    [1] K. Lauder, A. Toscani, N. Scalacci & D. Castagnolo, Chem. Rev. 2017, 117, 14091.
    [2] D. L. Murphy, F. Karoum, D. Pickar, R. M. Cohen, S. Lipper, A. M. Mellow, P. N. Tariot & T. Sunderland, J. Neural Transm. Suppl. 1998, 52, 39.
    [3] O. Weinreb, S. Mandel, O. B. Am, M. Y. Falach, Y. A Tirosh, T. Amit & M. B. H. Youdim, Neurotherapeutics 2009, 6, 163.
    [4] V. A. Peshkov, O. P. Pereshivko & E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790.
    [5] S. Ghosh, K. Biswas, S. Bhattacharya, P. Ghosh & B. Basu, Beilstein J. Org. Chem. 2017, 13, 552.
    [6] F. P. Xiao, Y. L. Chen, Y. Liu & J. B. Wang, Tetrahedron 2008, 64, 2755.
    [7] B. Yan & Y. H. Liu, Org. Lett. 2007, 9, 4323.
    [8] H. F. Li, J. Liu, B. Yan & Y. Z. Li, Tetrahedron Lett. 2009, 50, 2353.
    [9] E. S. Lee, H. S. Yeom, J. H. Hwang & S. H. Shin, Eur. J. Org. Chem. 2007, 21, 3503.
    [10] J. P. Guermont, Bull. Soc. Chim. Fr 1953, 386.
    [11] T. K. Saha & R. Das, ChemistrySelect 2018, 3, 12206.
    [12] C. M. Wei & C. J. Li, J. Am. Chem. Soc. 2003, 125, 9584.
    [13] A. M. Munshi, M. W. Shi, S. P. Thomas, M. Saunders, M. A. Spackman, K. S. Iyer & N. M. Smith, Dalton Trans. 2017, 46, 5133.
    [14] C. M. Wei, Z. G. Li & C. J. Li, Org. Lett. 2003, 5, 4473.
    [15] A. Beillard, T. X. Métro, X. Bantreil, J. Martinez & F. Lamaty, Eur. J. Org. Chem. 2017, 31,4642.
    [16] N. Gommermann, C. Koradin, K. Polborn & P. Knochel, Angew. Chem. Int. Ed. 2003, 42, 5763.
    [17] S. B. Park & H. Alper, Chem. Commun. 2005, 36, 1315.
    [18] X. Y. Dou, Q. Shuai, L. N. He & C. J. Li, Adv. Synth. Catal. 2010, 352, 2437.
    [19] S. I. Sampani, V. Zdorichenko, M. Danopoulou, M. C. Leech, K. Lam, A. A. Sada, B. Cox, G. J. Tizzard, S. J. Coles, A. Tsipis & G. E. Kostakis, Dalton Trans. 2020, 49, 289.
    [20] H. Z. Guo, X. Liu,Q. S. Xie, L. S. Wang, D. L. Peng, P. S. Brancob & M. B. Gawande, RSC Adv. 2013, 3, 19812.
    [21] M. J. Albaladejo, F. Alonso, Y. Moglie & M. Yus, Eur. J. Org. Chem 2012, 2012, 3093.
    [22] K. Namitharan & K. Pitchumani, Eur. J. Org. Chem. 2010, 2010, 411.
    [23] W. W. Chen, H. P. Bi & C. J. Li, Synlett 2010, 3, 475.
    [24] P. H. Li, Y. C. Zhang & L. Wang, Chem. Eur. J. 2009, 15, 2045.
    [25] T. Q. Zeng, W. W. Chen, C. M. Cirtiu, A. Moores, G. H. Song & C. J. Li, Green Chem. 2010, 12, 570.
    [26] P. Mandal & A. P. Chattopadhyay, Dalton Trans. 2015, 44, 11444.
    [27] E. Ramu, R. Varala, N. Sreelathaa & S. R. Adapa, Tetrahedron Lett. 2007, 48, 7184.
    [28] P. H. Li & L. Wang, Chin. J. Chem. 2005, 23, 1076.
    [29] B. Sreedhar, A. S. Kumar & P. S. Reddy, Tetrahedron Lett. 2010, 51, 1891.
    [30] X. Zhang & A. Corma, Angew. Chem. Int. Ed. 2008, 47, 4358.
    [31] M. Gholinejad, M. Afrasi & C. Najera, Appl. Organometal. Chem. 2019, 33, e4760.
    [32] 曾雅怡 (2012)。鈀催化膦酸二乙酯進行Mizoroki-Heck Type反應及CuO/ZnO催化三成 份之耦合反應。國立臺北科技大學大學有機高分子研究所碩士論文,臺北市。取自 https://hdl.handle.net/11296/6wgypd
    第三單元
    [1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartul & J. S. Beck, Nature 1992, 359, 710.
    [2] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins & J. L. Schlenker, Pure Appl. Chem. 1985, 57, 603.
    [3] D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka & G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
    [4] W. H. Wang, S. H. Xie, W. Z. Zhou & A. Sayari, Chem. Mater. 2004, 16, 1756.
    [5] A. E. G. Bennett, S. Williamson, P. A. Wright & I. J. Shannon, J. Mater. Chem. 2002, 12, 3533.
    [6] J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth & S. E. Schrammt, Chem. Mater. 1994, 6, 1816.
    [7] X. F. Zhou, S. Z. Qiao, N. Hao, X. L. Wang, C. Z. Yu, L. Z. Wang, D. Y. Zhao & G. Q. Lu, Chem. Mater. 2007, 19, 1870.
    [8] H. P. Lin, C. Y. Tang & C. Y. Lin, J. Chin. Chem. Soc. 2002, 49, 981.
    [9] V. Alfredsson & M. W. Anderson, Chem. Mater. 1996, 8, 1141.
    [10] J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park & G. D. Stucky, J. Phys. Chem. B 2002, 106, 2552.
    [11] Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao & F. S. Xiao, Angew. Chem. Int. Ed. 2001, 40, 1258.
    [12] A. Bhaumik & S. Inagaki, J. Am. Chem. Soc. 2001, 123, 691.
    [13] A. Walcarius, M. Etienne & B. Lebeau, Chem. Mater. 2003, 15, 2161.
    [14] Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie & H. F. Xu, Angew. Chem. Int. Ed. 2003, 42, 414.
    [15] F. Noll, M. Sumper & N. Hampp, Nano Lett. 2002, 2, 91.
    [16] Z. Y. Zhong, Y. D.Yin, B. Gates & Y. A. Xia, Adv. Mater. 2000, 12, 206.
    [17] C. E. Fowler, D. Khushalani & S. Mann, Chem. Commun. 2001, 19, 2028.
    [18] M. J. Rosen & J. T. Kunjappu, Surfactants and Interfacial Phenomena, Fourth Edition, John Wiley & Sons, Inc. 2012.
    [19] K. Holmberg, B. Jönsson, B. Kronberg & B. Lindman, Surfactants and Polymers in Aqueous Solution, John Wiley & Sons, Ltd, 2002.
    [20] B. Lindman & H. Wennerström, Micelles, Amphiphile aggregation in aqueous solution, Springer, Berlin, Heidelberg, 1980.
    [21] D. Chandler, Nature 2005, 437, 640.
    [22] D. J. Mitchell & B. W. Ninham, J. Chem. Soc., Faraday Trans. 2 1981, 77, 601.
    [23] H. P. Lin & C. Y. Mou, Acc. Chem. Res. 2002, 35, 927.
    [24] C. J. Brinker & G. W. Scherer, J. Non Cryst. Solids 1985, 70, 301.
    [25] F. C. Silva, M. F. C. Cardoso, P. G. Ferreira & V. F. Ferreira, Chemistry of 1,2,3-triazoles, Top. Heterocycl. Chem., Springer-Verlag, Berlin, Heidelberg , 2014.
    [26] S. G. Agalave, S. R. Maujan & V. S. Pore, Chem. Asian J. 2011, 6, 2696.
    [27] D. Dheer, V. Singh & R. Shankar, Bioorg. Chem. 2017, 71, 30.
    [28] H. C. Kolb, M. G. Finn & K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
    [29] J. Yang, D. Hoffmeister, L. Liu, X. Fu & J. S. Thorson, Bioorg. Med. Chem. 2004, 12, 1577.
    [30] L. L. Rossi & A. Basu, Bioorganic Med. Chem. Lett. 2005, 15, 3596.
    [31] A. J. Link & D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164.
    [32] D. A. Ossipov & J. Hilborn, Macromolecules 2006, 39, 1709.
    [33] A. P. Vogt & B. S. Sumerlin, Macromolecules 2006, 39, 5286.
    [34] D. D. Díaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B. Sharpless, V. V. Fokin & M. G. Finn, J. Polym. Sci. A Polym. Chem. 2004, 42, 4392.
    [35] L. Y. Liang & D. Astruc, Coord. Chem. Rev. 2011, 255, 2933.
    [36] R. Huisgen, Proc. Chem. Soc. 1963, 2, 565.
    [37] C. W. Tornøe, C. Christensen & M. Meldal, J. Org. Chem. 2002, 67, 3057.
    [38] V. V. Rostovtsev, L. G. Green, V. V. Fokin & K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2598.
    [39] E. Haldón, M. C. Nicasio & P. J. Pérez, Org. Biomol. Chem. 2015, 13, 9528.
    [40] F. Zhou, C. Tan, J. Tang, Y. Y. Zhang, W. M. Gao, H. H. Wu, Y. H. Yu & J. Zhou, J. Am. Chem. Soc. 2013, 135, 10994.
    [41] S. Díez‐González, A. Correa, L. Cavallo & S. P. Nolan, Chem. Eur. J. 2006, 12, 7558.
    [42] G. C. Kuang, H. A. Michaels, J. T. Simmons, R. J. Clark & L. Zhu, J. Org. Chem. 2010, 75, 6540.
    [43] P. Iniyavan, G. L. Balaji, S. Sarveswari & V. Vijayakumar, Tetrahedron Lett. 2015, 56, 5002.
    [44] H. A. Orgueira, D. Fokas, Y. Isome, P. C. M. Chan & C. M. Baldino, Tetrahedron Lett. 2005, 46, 2911.
    [45] L. D. Pachón, J. H. van Maarseveen & G. Rothenberg, Adv. Synth. Catal. 2005, 347, 811.
    [46] B. H. Lipshutz & B. R. Taft, Angew. Chem. Int. Ed. 2006, 45, 8235.
    [47] X. Q. Xiong, H. X. Chen, Z. K. Tang & Y. B. Jiang, RSC Adv. 2014, 4, 9830.
    [48] X. Q. Xiong & L. Cai, Catal. Sci. Technol. 2013, 3, 1301.
    [49] S. Roy, T. Chatterjee, M. Pramanik, A. S. Roy, A. Bhaumik, S. M. Islam, J. Mol. Catal. A Chem. 2014, 386, 78.
    [50] C. L. Wang, D. Ikhlef, S. Kahlal, J. Y. Saillard & D. Astruc, Coord. Chem. Rev. 2016, 316, 1.
    [51] L. Zhang, X. G. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin & G. C. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
    [52] J. McNulty, K. Keskar & R. Vemula, Chem. Eur. J. 2011, 17, 14727.
    [53] M. Boominathan, N. Pugazhenthiran, M. Nagaraj, S. Muthusubramanian, S. Murugesan & N. Bhuvanesh, ACS Sustain. Chem. Eng. 2013, 1, 1405.
    [54] E. Rasolofonjatovo, S. Theeramunkong, A. Bouriaud, S. Kolodych, M. Chaumontet & F. Taran, Org. Lett. 2013, 15, 4698.
    [55] H. S. P. Rao & G. Chakibanda, RSC Adv. 2014, 4, 46040.
    [56] X. Meng, X. Y. Xu, T. T. Gao & B. H. Chen, Eur. J. Org. Chem. 2010, 2010, 5409.
    [57] 張顓麟 (2019)。合成Copper Silicate孔洞材料作為氫化觸媒之研究。國立成功大學化學 系研究所碩士論文,臺南市。取自https://hdl.handle.net/11296/f32z47
    [58] H. Ankati & E. Biehl, Tetrahedron Lett. 2009, 50, 4677.
    [59] K. Asano & S. Matsubara, Org. Lett. 2010, 12, 4988.
    [60] M. Liu & O. Reiser, Org. Lett. 2011, 13, 1102.
    [61] Z. X. Wang & Z. G. Zhao, J. Heterocyclic Chem. 2007, 44, 89.
    [62] C. W. Shao, X. Y. Wang, J. M. Xu, J. C. Zhao, Q. Zhang & Y. F. Hu, J. Org. Chem. 2010, 75, 7002.
    [63] S. Chassaing, A. S. S. Sido, A. Alix, M. Kumarraja, P. Pale & J. Sommer, Chem. Eur. J. 2008, 14, 6713.
    [64] Zsombor Gonda & Z. Novák, Dalton Trans. 2010, 39, 726.
    [65] T. Nakamura, T. Terashima, K. Ogata, and S. Fukuzawa, Org. Lett. 2011, 13, 620.
    [66] K.Yamaguchi, T. Oishi, T. Katayama & N. Mizuno, Chem. Eur. J. 2009, 15, 10464.
    [67] H. X. Siyang, H. L. Liu, X. Y. Wu & P. N. Liu, RSC Adv. 2015, 5, 4693.
    [68] D. Wang, N. Li, M. M. Zhao, W. L. Shi, C. W. Ma & B. H. Chen, Green Chem. 2010, 12, 2120.
    [69] 黃騰儀 (2011)。可再使用的CuO/ZnO在水中催化環化加成反應形成1,2,3-三氮唑之探討。 國立臺北科技大學大學有機高分子研究所碩士論文,臺北市。取自 https://hdl.handle.net/11296/tsq74g

    下載圖示
    2026-01-22公開
    QR CODE