| 研究生: |
廖柏維 Liao, Bo-Wei |
|---|---|
| 論文名稱: |
合成中孔洞金屬矽酸鹽及碳材作為觸媒催化有機反應之研究 Synthesis of Mesoporous Metal-Silicates and -Carbons as Catalysts of Organic Reactions |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 共同指導: |
蔡福裕
Tsai, Fu-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 綠色化學 、中孔洞材料 、菱殼碳 、銅矽酸鹽材料 、催化 、硝基還原 、A3偶聯反應 、點擊反應 |
| 外文關鍵詞: | green chemistry, mesoporous materials, water-chestnut-shell biochar (WCSB), copper silicate material, catalysis, nitroarene reduction, A3 coupling reaction, click reaction |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究方向以綠色製程且兼具回收循環機制的低成本方式,合成中孔洞材料:以農業廢棄物-菱角殼作為碳源,透過簡易物理混合法,不需使用有機溶劑,即可得高比表面積之菱殼碳材;以工廠廢水作為銅源,將前驅物離子溶液與矽酸鈉混合後,再以鹼源調整使其共同沉澱,合成出高比表面積在400 m2/g以上之CuO@SiO2孔洞材料,並使用自行合成之綠色中孔洞材料進行有機催化反應。
第一單元為使用高含氮量菱殼碳,其比表面積高達1284 m2/g,可在有機溶劑中高效還原硝基化合物得到多種胺類衍生物,反應條件溫和、官能基耐受性佳、觸媒使用量極低且非常環保,亦可進行公克級反應,具有工業化之潛力。
第二單元使用菱殼碳作為載體,使用沉積沉澱法擔載鐵金屬,合成出Fe2O3@C觸媒進行A3偶聯反應,可在不使用溶劑之條件下催化醛、胺及末端炔在溫和條件下合成出丙炔胺衍生物。
第三單元則是使用共沉澱法將銅廢液與水玻璃加入鹼源,在pH值 = 8.5環境中沉澱出來,以合成出CuO@SiO2觸媒,其分散性極佳,比表面積可達400 m2/g以上,可在水相下將疊氮化合物與末端炔高效合成出一系列1,2,3-三唑衍生物,其反應條件溫和、高產率、催化量低且觸媒可使用五次以上,觸媒仍保持高度催化活性,符合綠色化學要求。
In this study, water-chestnut-shell biochar (WCSB) was used as the carbon source to synthesize multiporous carbons (MPCs) via a simple and eco-friendly physical blending method. The experimental results showed that the MPCs had a high surface area of ~1600 m2/g. The copper silicate is made from co-precipitation method, the N2 adsorption-desorption isotherms showed the occurrence of capillary condensation at P/P0 values in the range of 0.4 to 0.5. Hence, the copper silicate materials were inferred to have a meso-structure. In addition, the specific surface area exceeded 500 m2/g.
The N-rich MPC process high catalytic activity to reduce nitroarene to amine compounds under mild conditions with high yield, especially, the nitroarene ring bearing electron-withdrawing group on para-position and heterocycle system. The Fe2O3@C catalyst process high catalytic activity to coupling of aldehyde, secondary amine, alkyne without solvent under mild conditions with good functional tolerance to gain propargylamine products with moderate yield. The copper silicate also process high catalytic activity to catalyze azide and alkyne compounds in water with very high yield and good functional tolerance.
第一單元
[1] K. S. W. Sing, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol & T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
[2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli & J. S. Beck, Nature 1992, 359, 710.
[3] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins & J. L. Schlenker, J. Am, Chem. Soc. 1992, 114, 10834.
[4] C. Liang, Z. Li & S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696.
[5] C. R. Bansal, J. B. Donnet & F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
[6] H. C. Foley, J. Microporous Mater. 1995, 4, 407.
[7] J. Lee, S. Yoon, T. Hyeon, S. M. Oha & K. B. Kimb, Chem. Commun. 1999, 21, 2177.
[8] H. Zhou, S. Zhu, M. Hibino, I. Honma & M. Ichihara, Adv. Mater. 2003, 15, 2107.
[9] H. Huang, J. Zhang, Y. Zhang, S. Lian & Y. Liu, Solid State Sci. 2013, 24, 115.
[10] E. P. Mayoral, I. Matos, M. Bernardo & I. M. Fonseca, Catalysts 2019, 9, 133.
[11] H. Marsh & F. R. Reinoso, Activated Carbon; Elsevier: Kidlington, UK, 2006.
[12] M. A. Yahya, Z. A. Qodah & C. W. Z. Ngah, Renew. Sust. Energ. Rev., 2015, 46, 218.
[13] R. A. Canales-Flores & F. Prieto-Garc, Chem. Biodiversity 2016, 13, 261
[14] F. Rodríguez-Reinoso, M. Molina-Sabio & M. T. González, Carbon 1995, 33, 15.
[15] A. Jain, R. Balasubramanian & M. P. Srinivasan, Chem. Eng. Technol. 2016, 283, 789.
[16] W. Ao, J. Fu, X. Mao, Q. H. Kang, C. M. Ran, Y. Liu, H. D. Zhang, Z. P. Gao, J. Lia, G. Q. Liu & J. J. Dai, Renew. Sust. Energ. Rev. 2018, 92, 958.
[17] J. H. Knox, B. Kaur & G. R. Millward, J. Chromatogr. A 1986, 352, 3.
[18] R. Ryoo, S. H. Joo & S. Jun, J. Phys. Chem. B 1999, 103, 7743.
[19] R. Ryoo, S. H. Joo, M. Kruk & M. Jaroniec, Adv. Mater. 2001, 13, 677.
[20] Y. L. Cao, S. J. Mao, M. M. Li, Y. Q. Chen & Y. Wang, ACS Catal. 2017, 7, 8090.
[21] I. Y. Jeon, H. J. Noh & J. B. Baek, Chem. Asian J. 2020, 15, 2282.
[22] W. M. Chen, M. Wan, Q. Liu, X. Q. Xiong, F. Q. Yu & Y. H. Huang, Small Methods 2018, 3, 1800323.
[23] J. P. Paraknowitsch & A. Thomas, Energy Environ. Sci. 2013, 6, 2839.
[24] E. K. Rideal & W. M. Wright, J. Chem. Soc. 1926, 129, 1813.
[25] J. X. Wu, Z. Y. Pan, Y. Zhang, B. J. Wang & H. S. Peng, J. Mater. Chem. A 2018, 6, 12932.
[26] Y. Chi, T. Y. Chou, Y. J. Wang & S. F. Huang, Organometallics 2004, 23, 95.
[27] F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias & G. N. R. Filho, Microporous Mesoporous Mater. 2008, 113, 562.
[28] J. A. Schwarz, Chem. Rev. 1995, 95, 477.
[29] M. Haruta, N. Yamada, T. Kobayashi & S. Iijima, J. Catal 1989, 115, 301.
[30] R. Nares, J. Ramı´rez, A. G. Alejandre, C. Louis & T. Klimova, J. Phys. Chem. B 2002, 106, 13287.
[31] T. Kahl, K. W. Schröder, F. R. Lawrence, W. J. Marshall, H, Höke, R. Jäckh, Aniline, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
[32] J. D. Robert & M. C. Caserio, Basic Principles of Organic Chemistry, second edition. W. A. Benjamin, Inc., Menlo Park, CA. 1977.
[33] J. Bonjoch & D. Sole, Chem. Rev. 2000, 100, 3455.
[34] J. Teske, J. P. Weller, U. V. Albrecht & A. Fieguth, J. Anal. Toxicol. 2011, 35, 248.
[35] T. Jonssonl, C. B. Christensen, H. Jordening & C. Frelund, Pharmacol. Toxicol. 1988, 62, 203.
[36] C. Straube, S. Derry, K.C. Jackson, P. J. Wiffen, R. F. Bell, S. Strassels & S. Straube, Cochrane Database Syst. Rev. 2014, 9, 1.
[37] E. B. Esu1, E. E. Effa, O. N Opie & M. M. Meremikwu, Cochrane Database Syst. Rev. 2019, 6, 1.
[38] N. J. Connors & R. S. Hoffman, J. Pharmacol. Exp. Ther. 2013, 347, 251.
[39] J. J. Walline, K. Lindsley, S. S. Vedula, S. A. Cotter, D. O. Mutti & J. D. Twelker, Cochrane Database Syst. Rev. 2011, 12, 1.
[40] E. Poleszak, A. Szopa, E. Wyska, W. K. Koch, A. Serefko, S. Wosko, K. Bogatko, A. Wrobel & P. Wlaz, Pharmacol. Rep. 2016, 68, 56.
[41] A. Bafana, S. S. Devi & T. Chakrabarti, Environ. Rev. 2011, 19, 350.
[42] T. Farooqui, Neurochem. Int. 2013, 62, 122.
[43] A. Hameed, S. Javed , R. Noreen, T. Huma, S. Iqbal, H. Umbreen, T. Gulzar & T. Farooq, Molecules 2017, 22, 1691.
[44] P. F. Vogt & J. J. Gerulis, Amines, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
[45] G. Booth, Nitro Compounds, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2000.
[46] J. Tuteja, S. Nishimura & K. Ebitani, RSC Adv. 2014, 4, 38241.
[47] F. Li, B. Frett & H. Y. Li, Synlett 2014, 25, 1403.
[48] F. Zhao,Y. Ikushima & M. Arai, J. Catal 2004, 224, 479.
[49] R. F. Nie, J .H. Wang, L.Wang, Y. Qin, P. Chen & Z. Y. Hou, Carbon 2012, 50, 586.
[50] J. Rahimi, R. T. Ledari, M. Niksefat & A. Maleki, Catal. Commun. 2020, 134, 105850.
[51] W. S. Guo, R. Pleixats & A. Shafir, Chem. Asian J. 2015, 10, 2437.
[52] H. K. Kadam & S. G. Tilve, RSC Adv. 2012, 2, 6057.
[53] C. Tamuly, I. Saikia, M. Hazarikaa & M. R. Dasb, RSC Adv. 2014, 4, 53229.
[54] D. Balcom & A. Furst, J. Am. Chem. Soc. 1953, 75, 4334.
[55] S. Payra & S. Banerjee, ChemistrySelect 2019, 4, 9556.
[56] F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M. M. Pohl, J. Radnik, A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner & M. Beller, Nat. Chem. 2013, 5, 537.
[57] P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv & Z. H. Zhang, Sci. Adv. 2017, 3, e1601945.
[58] G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar & M. Beller, J. Am. Chem. Soc. 2011, 133, 12875.
[59] R. V. Jagadeesh, T. Stemmler, A. E. Surkus, H. Junge, K. Junge & M. Beller, Nat. Protoc. 2015, 10, 548.
[60] X. K. Kong, Z. Y. Sun, M. Chen, C. L. Chen & Q. W. Chen, Energy Environ. Sci. 2013, 6, 3260.
[61] F. Yang, C. Chi, C. X. Wang, Y. Wang & Y. F. Li, Green Chem. 2016, 18, 4254.
[62] S. C. Wu, G. D. Wen, J. Wang, J. F. Rong, B. N. Zong, R. Schlöglc & D. S. Su, Catal. Sci. Technol. 2014, 4, 4183.
[63] K. S. W. Sing, Pure & Appl. Chem. 1985, 57, 603.
[64] 潘正邦 (2020)。以菱殼炭合成高比表面積之多重孔洞碳材應用於超級電容、電容脫鹽 與氧氣還原反應。國立成功大學化學系研究所碩士論文,臺南市。取自 https://hdl.handle.net/11296/u7ej9m
[65] K. Motoshima, M. Ishikawa, Y. Hashimoto & K. Sugita, Bioorg. Med. Chem. 2011, 19, 3156.
[66] J. J. Niu, P. R.Guo, J. T. Kang, Z. G. Li, J. W. Xu & S. J. Hu, J. Org. Chem. 2009, 74, 5075.
[67] Y. Li, X. H. Zhu, F.Meng & Y. Q. Wan, Tetrahedron 2011, 67, 5450.
[68] H. H. Rao, H. Fu,Y. Y. Jiang & Y. F. Zhao, Angew. Chem. Int. Ed. 2009, 48, 1114.
[69] Y. Motoyama, K. Kamo & H. Nagashima, Org. Lett. 2009, 11, 1345.
[70] Z. X. Chen,Y. W. Jiang, L. Zhang, Y. L. Guo & D. W. Ma, J. Am. Chem. Soc. 2019, 141, 3541.
[71] G. D. Vo & J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
[72] H. J. Xu, Y. F. Liang, Z. Y. Cai, H. X. Qi, C. Y. Yang & Y. S. Feng, J. Org. Chem. 2011, 76, 2296
[73] V. Dichiarante, A. Salvaneschi, S. Protti, D. Dondi, M. Fagnoni & A. Albini, J. Am. Chem. Soc. 2007, 129, 15919.
[74] S. C. Lin, Y. H. Liu, S. M. Peng & S. T. Liu, Mol. Catal. 2019, 466, 46.
[75] Z. A. Hua, J. J. Zhou, Y. J. Ai, L. Liu, L. Qi, R. H. Jiang, H. J. Bao, J. T. Wang, J. S. Hua, H. B. Sun & Q. L. Liang, J. Catal 2018, 368, 20.
[76] Y. Q. Yang, Z. Chen & Y. Rao, Chem. Commun. 2014, 50, 15037.
[77] G. Vijaykumar & S. K. Mandal, Dalton Trans. 2016, 45, 7421.
[78] J. Choy, S. J. Figueroa, L. Jiang & P. Wagner, Synth. Commun. 2008, 38, 3840.
[79] J. W. Larsen, M. Freund1, K. Y. Kim, M. Sidovar & J. L. Stuart, Carbon 2000, 38, 655.
[80] C. J. Liao, B. Liu, Q. Chi & Z. H. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 44421.
第二單元
[1] K. Lauder, A. Toscani, N. Scalacci & D. Castagnolo, Chem. Rev. 2017, 117, 14091.
[2] D. L. Murphy, F. Karoum, D. Pickar, R. M. Cohen, S. Lipper, A. M. Mellow, P. N. Tariot & T. Sunderland, J. Neural Transm. Suppl. 1998, 52, 39.
[3] O. Weinreb, S. Mandel, O. B. Am, M. Y. Falach, Y. A Tirosh, T. Amit & M. B. H. Youdim, Neurotherapeutics 2009, 6, 163.
[4] V. A. Peshkov, O. P. Pereshivko & E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790.
[5] S. Ghosh, K. Biswas, S. Bhattacharya, P. Ghosh & B. Basu, Beilstein J. Org. Chem. 2017, 13, 552.
[6] F. P. Xiao, Y. L. Chen, Y. Liu & J. B. Wang, Tetrahedron 2008, 64, 2755.
[7] B. Yan & Y. H. Liu, Org. Lett. 2007, 9, 4323.
[8] H. F. Li, J. Liu, B. Yan & Y. Z. Li, Tetrahedron Lett. 2009, 50, 2353.
[9] E. S. Lee, H. S. Yeom, J. H. Hwang & S. H. Shin, Eur. J. Org. Chem. 2007, 21, 3503.
[10] J. P. Guermont, Bull. Soc. Chim. Fr 1953, 386.
[11] T. K. Saha & R. Das, ChemistrySelect 2018, 3, 12206.
[12] C. M. Wei & C. J. Li, J. Am. Chem. Soc. 2003, 125, 9584.
[13] A. M. Munshi, M. W. Shi, S. P. Thomas, M. Saunders, M. A. Spackman, K. S. Iyer & N. M. Smith, Dalton Trans. 2017, 46, 5133.
[14] C. M. Wei, Z. G. Li & C. J. Li, Org. Lett. 2003, 5, 4473.
[15] A. Beillard, T. X. Métro, X. Bantreil, J. Martinez & F. Lamaty, Eur. J. Org. Chem. 2017, 31,4642.
[16] N. Gommermann, C. Koradin, K. Polborn & P. Knochel, Angew. Chem. Int. Ed. 2003, 42, 5763.
[17] S. B. Park & H. Alper, Chem. Commun. 2005, 36, 1315.
[18] X. Y. Dou, Q. Shuai, L. N. He & C. J. Li, Adv. Synth. Catal. 2010, 352, 2437.
[19] S. I. Sampani, V. Zdorichenko, M. Danopoulou, M. C. Leech, K. Lam, A. A. Sada, B. Cox, G. J. Tizzard, S. J. Coles, A. Tsipis & G. E. Kostakis, Dalton Trans. 2020, 49, 289.
[20] H. Z. Guo, X. Liu,Q. S. Xie, L. S. Wang, D. L. Peng, P. S. Brancob & M. B. Gawande, RSC Adv. 2013, 3, 19812.
[21] M. J. Albaladejo, F. Alonso, Y. Moglie & M. Yus, Eur. J. Org. Chem 2012, 2012, 3093.
[22] K. Namitharan & K. Pitchumani, Eur. J. Org. Chem. 2010, 2010, 411.
[23] W. W. Chen, H. P. Bi & C. J. Li, Synlett 2010, 3, 475.
[24] P. H. Li, Y. C. Zhang & L. Wang, Chem. Eur. J. 2009, 15, 2045.
[25] T. Q. Zeng, W. W. Chen, C. M. Cirtiu, A. Moores, G. H. Song & C. J. Li, Green Chem. 2010, 12, 570.
[26] P. Mandal & A. P. Chattopadhyay, Dalton Trans. 2015, 44, 11444.
[27] E. Ramu, R. Varala, N. Sreelathaa & S. R. Adapa, Tetrahedron Lett. 2007, 48, 7184.
[28] P. H. Li & L. Wang, Chin. J. Chem. 2005, 23, 1076.
[29] B. Sreedhar, A. S. Kumar & P. S. Reddy, Tetrahedron Lett. 2010, 51, 1891.
[30] X. Zhang & A. Corma, Angew. Chem. Int. Ed. 2008, 47, 4358.
[31] M. Gholinejad, M. Afrasi & C. Najera, Appl. Organometal. Chem. 2019, 33, e4760.
[32] 曾雅怡 (2012)。鈀催化膦酸二乙酯進行Mizoroki-Heck Type反應及CuO/ZnO催化三成 份之耦合反應。國立臺北科技大學大學有機高分子研究所碩士論文,臺北市。取自 https://hdl.handle.net/11296/6wgypd
第三單元
[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartul & J. S. Beck, Nature 1992, 359, 710.
[2] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins & J. L. Schlenker, Pure Appl. Chem. 1985, 57, 603.
[3] D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka & G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
[4] W. H. Wang, S. H. Xie, W. Z. Zhou & A. Sayari, Chem. Mater. 2004, 16, 1756.
[5] A. E. G. Bennett, S. Williamson, P. A. Wright & I. J. Shannon, J. Mater. Chem. 2002, 12, 3533.
[6] J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth & S. E. Schrammt, Chem. Mater. 1994, 6, 1816.
[7] X. F. Zhou, S. Z. Qiao, N. Hao, X. L. Wang, C. Z. Yu, L. Z. Wang, D. Y. Zhao & G. Q. Lu, Chem. Mater. 2007, 19, 1870.
[8] H. P. Lin, C. Y. Tang & C. Y. Lin, J. Chin. Chem. Soc. 2002, 49, 981.
[9] V. Alfredsson & M. W. Anderson, Chem. Mater. 1996, 8, 1141.
[10] J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park & G. D. Stucky, J. Phys. Chem. B 2002, 106, 2552.
[11] Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao & F. S. Xiao, Angew. Chem. Int. Ed. 2001, 40, 1258.
[12] A. Bhaumik & S. Inagaki, J. Am. Chem. Soc. 2001, 123, 691.
[13] A. Walcarius, M. Etienne & B. Lebeau, Chem. Mater. 2003, 15, 2161.
[14] Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie & H. F. Xu, Angew. Chem. Int. Ed. 2003, 42, 414.
[15] F. Noll, M. Sumper & N. Hampp, Nano Lett. 2002, 2, 91.
[16] Z. Y. Zhong, Y. D.Yin, B. Gates & Y. A. Xia, Adv. Mater. 2000, 12, 206.
[17] C. E. Fowler, D. Khushalani & S. Mann, Chem. Commun. 2001, 19, 2028.
[18] M. J. Rosen & J. T. Kunjappu, Surfactants and Interfacial Phenomena, Fourth Edition, John Wiley & Sons, Inc. 2012.
[19] K. Holmberg, B. Jönsson, B. Kronberg & B. Lindman, Surfactants and Polymers in Aqueous Solution, John Wiley & Sons, Ltd, 2002.
[20] B. Lindman & H. Wennerström, Micelles, Amphiphile aggregation in aqueous solution, Springer, Berlin, Heidelberg, 1980.
[21] D. Chandler, Nature 2005, 437, 640.
[22] D. J. Mitchell & B. W. Ninham, J. Chem. Soc., Faraday Trans. 2 1981, 77, 601.
[23] H. P. Lin & C. Y. Mou, Acc. Chem. Res. 2002, 35, 927.
[24] C. J. Brinker & G. W. Scherer, J. Non Cryst. Solids 1985, 70, 301.
[25] F. C. Silva, M. F. C. Cardoso, P. G. Ferreira & V. F. Ferreira, Chemistry of 1,2,3-triazoles, Top. Heterocycl. Chem., Springer-Verlag, Berlin, Heidelberg , 2014.
[26] S. G. Agalave, S. R. Maujan & V. S. Pore, Chem. Asian J. 2011, 6, 2696.
[27] D. Dheer, V. Singh & R. Shankar, Bioorg. Chem. 2017, 71, 30.
[28] H. C. Kolb, M. G. Finn & K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
[29] J. Yang, D. Hoffmeister, L. Liu, X. Fu & J. S. Thorson, Bioorg. Med. Chem. 2004, 12, 1577.
[30] L. L. Rossi & A. Basu, Bioorganic Med. Chem. Lett. 2005, 15, 3596.
[31] A. J. Link & D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164.
[32] D. A. Ossipov & J. Hilborn, Macromolecules 2006, 39, 1709.
[33] A. P. Vogt & B. S. Sumerlin, Macromolecules 2006, 39, 5286.
[34] D. D. Díaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B. Sharpless, V. V. Fokin & M. G. Finn, J. Polym. Sci. A Polym. Chem. 2004, 42, 4392.
[35] L. Y. Liang & D. Astruc, Coord. Chem. Rev. 2011, 255, 2933.
[36] R. Huisgen, Proc. Chem. Soc. 1963, 2, 565.
[37] C. W. Tornøe, C. Christensen & M. Meldal, J. Org. Chem. 2002, 67, 3057.
[38] V. V. Rostovtsev, L. G. Green, V. V. Fokin & K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2598.
[39] E. Haldón, M. C. Nicasio & P. J. Pérez, Org. Biomol. Chem. 2015, 13, 9528.
[40] F. Zhou, C. Tan, J. Tang, Y. Y. Zhang, W. M. Gao, H. H. Wu, Y. H. Yu & J. Zhou, J. Am. Chem. Soc. 2013, 135, 10994.
[41] S. Díez‐González, A. Correa, L. Cavallo & S. P. Nolan, Chem. Eur. J. 2006, 12, 7558.
[42] G. C. Kuang, H. A. Michaels, J. T. Simmons, R. J. Clark & L. Zhu, J. Org. Chem. 2010, 75, 6540.
[43] P. Iniyavan, G. L. Balaji, S. Sarveswari & V. Vijayakumar, Tetrahedron Lett. 2015, 56, 5002.
[44] H. A. Orgueira, D. Fokas, Y. Isome, P. C. M. Chan & C. M. Baldino, Tetrahedron Lett. 2005, 46, 2911.
[45] L. D. Pachón, J. H. van Maarseveen & G. Rothenberg, Adv. Synth. Catal. 2005, 347, 811.
[46] B. H. Lipshutz & B. R. Taft, Angew. Chem. Int. Ed. 2006, 45, 8235.
[47] X. Q. Xiong, H. X. Chen, Z. K. Tang & Y. B. Jiang, RSC Adv. 2014, 4, 9830.
[48] X. Q. Xiong & L. Cai, Catal. Sci. Technol. 2013, 3, 1301.
[49] S. Roy, T. Chatterjee, M. Pramanik, A. S. Roy, A. Bhaumik, S. M. Islam, J. Mol. Catal. A Chem. 2014, 386, 78.
[50] C. L. Wang, D. Ikhlef, S. Kahlal, J. Y. Saillard & D. Astruc, Coord. Chem. Rev. 2016, 316, 1.
[51] L. Zhang, X. G. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin & G. C. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
[52] J. McNulty, K. Keskar & R. Vemula, Chem. Eur. J. 2011, 17, 14727.
[53] M. Boominathan, N. Pugazhenthiran, M. Nagaraj, S. Muthusubramanian, S. Murugesan & N. Bhuvanesh, ACS Sustain. Chem. Eng. 2013, 1, 1405.
[54] E. Rasolofonjatovo, S. Theeramunkong, A. Bouriaud, S. Kolodych, M. Chaumontet & F. Taran, Org. Lett. 2013, 15, 4698.
[55] H. S. P. Rao & G. Chakibanda, RSC Adv. 2014, 4, 46040.
[56] X. Meng, X. Y. Xu, T. T. Gao & B. H. Chen, Eur. J. Org. Chem. 2010, 2010, 5409.
[57] 張顓麟 (2019)。合成Copper Silicate孔洞材料作為氫化觸媒之研究。國立成功大學化學 系研究所碩士論文,臺南市。取自https://hdl.handle.net/11296/f32z47
[58] H. Ankati & E. Biehl, Tetrahedron Lett. 2009, 50, 4677.
[59] K. Asano & S. Matsubara, Org. Lett. 2010, 12, 4988.
[60] M. Liu & O. Reiser, Org. Lett. 2011, 13, 1102.
[61] Z. X. Wang & Z. G. Zhao, J. Heterocyclic Chem. 2007, 44, 89.
[62] C. W. Shao, X. Y. Wang, J. M. Xu, J. C. Zhao, Q. Zhang & Y. F. Hu, J. Org. Chem. 2010, 75, 7002.
[63] S. Chassaing, A. S. S. Sido, A. Alix, M. Kumarraja, P. Pale & J. Sommer, Chem. Eur. J. 2008, 14, 6713.
[64] Zsombor Gonda & Z. Novák, Dalton Trans. 2010, 39, 726.
[65] T. Nakamura, T. Terashima, K. Ogata, and S. Fukuzawa, Org. Lett. 2011, 13, 620.
[66] K.Yamaguchi, T. Oishi, T. Katayama & N. Mizuno, Chem. Eur. J. 2009, 15, 10464.
[67] H. X. Siyang, H. L. Liu, X. Y. Wu & P. N. Liu, RSC Adv. 2015, 5, 4693.
[68] D. Wang, N. Li, M. M. Zhao, W. L. Shi, C. W. Ma & B. H. Chen, Green Chem. 2010, 12, 2120.
[69] 黃騰儀 (2011)。可再使用的CuO/ZnO在水中催化環化加成反應形成1,2,3-三氮唑之探討。 國立臺北科技大學大學有機高分子研究所碩士論文,臺北市。取自 https://hdl.handle.net/11296/tsq74g