| 研究生: |
陳聖文 Chen, Sheng-Wen |
|---|---|
| 論文名稱: |
二維拓樸絕緣體雙層鉍及單層錫烯的制備及物理特性之研究 The study of physical properties and fabrication of two dimension topological insulators Bismuth bilayer and Stanene |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 二維拓樸絕緣體 、硒化鉍 、量子穿隧顯微鏡 、角分辨光電子能譜 、錫烯 、鉍雙層結構 |
| 外文關鍵詞: | 2D Topological Insulator, Stanene, Bismuth Bilayer, Scanning Tunneling Microscope, Angle-resolved photoemission spectroscopy, Bismuth Selenide |
| 相關次數: | 點閱:174 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗分為兩個部分,第一,利用氫原子蝕刻三維拓樸絕緣體硒化鉍薄膜的方式,在表面形成二維拓樸絕緣體雙層鉍(111)結構。第二,進一步將錫蒸鍍於雙層鉍/硒化鉍系統,成長出單層二維拓樸絕緣錫烯。秀過量子穿隧顯微鏡(STM)以及角分辨光電子能譜(ARPES),分析其成長機制、能帶及表面結構。
在雙層鉍部分,量子穿隧顯微鏡觀察到在不同通量氫原子蝕刻的變化過程,最終在硒化鉍表面生成雙層鉍(111),在能帶結構上也與理論計算相符。
在錫烯部分,成功把錫烯成長在雙層鉍/硒化鉍系統,從量子穿隧顯微鏡觀察到蜂巢狀的結構。
The experiment include two parts, First, two dimensional Bi(111) bilayer (BL) are prepared on Bi2Se3 by hydrogen atom etching. Secondly, further deposit tin on Bi BL/Bi2Se3 to grow two dimensional stanene. Scanning tunneling microscope (STM) and angle-resolved photoemission spectroscopy (ARPES) were used to analyze the etching mechanism and its band structure.
For Bi BL, we observed the revolution process with varied hydrogen dosing by STM and eventually form a sigle bismuth (111) bilayer on Bi2Se3.
Regarding stanene, we successfully grew the stanene on BL/ Bi2Se3 ,the honeycomb structure observed by STM strongly support our finding.
Chapter 1
[1] X. L. Qi and S. C. Zhang, Phys. Today, 63, 33 (2010).
[2] S. Murakami, et al., Science, 301, 1348 (2003).
[3] J. Sinova, et al., Phys. Rev. Lett., 92, 126603 (2004).
[4] C.L. Kane and E.J. Mele, Phys. Rev. Lett., 95, 226801 (2005).
[5] B.A. Bernevig, et al., Science, 314, 1757 (2006).
[6] Markus König, et al., Science, 319, 766 (2007).
[7] C.L. Kane and E.J. Mele, Phys. Rev. Lett., 95, 146802 (2005).
[8] L. Fu and C.L. Kane, Phys. Rev. B, 76, 045302 (2007).
[9] D. Hsieh, et al., Nature, 452, 970 (2008).
[10] H. Zhang, et al., Nature Phys., 5, 438 (2009).
[11] Y. Xia, et al., Nature Phys., 5, 398 (2009).
[12] D. Hsieh, et al., Phys. Rev. Lett., 103, 146401 (2009).
[13] Z. Liu, et al., Phys. Rev. Lett., 107, 136805 (2011).
[14] S. Murakami, Phys. Rev. Lett., 97, 236805 (2006).
[15] D. Wang, et al., J.Phys. Soc. Jpn., 82, 094712 (2013).
[16] M. Wada, et al., Phys. Rev. B, 83, 121310 (2011).
[17] Liu, et al., Phys. Rev. B, 84, 195430 (2011).
[18] Y. Xu, et al., Phys. Rev. Lett., 111, 136804 (2013).
[19] Charles Day, Physics Today, 61(1), 19 (2008).
[20] X. L. Qi and S. C. Zhang., Physics Today, 63(1), (2010).
[21] M. Z. Hasan, et al., Annu. Rev. Condens.Matter Phys., 2,55 (2011).
[22] C. Kane and J. Moore, Physics World, 32 (2009).
[23] W. Richter, et al., Phys. Status Solidi. B, 84, 619 (1977).
[24] G. H. Zhang, et al., Applied Physics Letters, 95, 053114 (2009).
[25] C. L. Song, et al., Applied Physics Letters, 97, 143118 (2010).
[26] S. Nakajima, J. Phys. Chem. Solids, 24, 479 (1962).
[27] Natl. Bur. Stand. (U.S.) Monogr., 25, vol. 18, page 16 (1981).
[28] Bhimanapati, et al,. ACS nano, 9(12), (2015).
[29] Cahangirov, et al., Phys. Rev. Lett., 102(23), (2009).
[30] Balendhran, et al., Small, 11(6), (2015).
[31] Matthes, et al., J.Phys. Condens.Matter 25, 395305 (2013).
[32] Zhu, F. f., et al., Nat Mater, 14, 1020-1025 (2015).
[33] Mönig, H., et al., Physical Review B, 72, 085410 (2005).
[34] T. nagao, et al., Phys. Rev. Lett., 93, 105501 (2004).
[35] K. Zhang, et al., J.Phys. Condens.Matter, 24,435502 (2012).
[36] M. X. Wang, et al., Science, 336, 52-55 (2012).
[37] L. Miao, et al., Proc. Natl. Acad. Sci., 110, 2758-2762 (2013).
[38] M. Chen, et al., Phys. Rev. Lett., 101, 081603 (2012).
[39] T. Hirahara, et al., Phys. Rev. Lett., 97, 146803 (2006).
[40] K.Govaerts, et al., Phys. Rev. B, 90, 155124 (2014).
[41] K. F. Zhang, et al., Applied Physics Letters, 107, 121601 (2015).
[42] Shokri, R., et al., Phys. Rev. B, 91, 205430 (2015).
Chapter 2
[1] Ada Della Pia ; Giovanni Costantini. “Scanning Tunneling Microscopy”, G. Bracco, B. Holst (eds.), Surface Science Techniques, Springer Series in Surface Sciences 51,Springer-Verlag Berlin Heidelberg 2013
[2] M. Ternes, “scanning tunneling spectroscopy at the single atom scale.” PhD thesis, École Polytechnique Fédérale de Lausanne(2006)
[3] H. H. Chen, “The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene.” PhD thesis, Department of Physics, Nation Cheng Kung University (2015).
[4] J.C.A. Huang, Ph. D. Thesis, University of Illinoia
[5] B. Heinrich, J.A.C Bland, Ultrathin Magneic Structure I, Springer-Verlag, New York (1994)
[6] P. H. Chen, “Epitaxial Growth and Structural Characterization of Single Crystalline Bi2Te3/Bi2Se3 Topological Insulator Multilayer” Master thesis, Department of Physics, Nation Cheng Kung University (2013).
[7] S. A. Chambers, Surface Science Report, 39, 105 (2000).
[8] Oura, K.; V.G. Lifshits; A.A. Saranin; A.V. Zotov; M. Katayama (2003). Surface Science: An Introduction. Berlin: Springer.
[9] Pimpinelli, Alberto; Jacques Villain (1998). Physics of Crystal Growth. Cambridge: Cambridge University Press
[10] John F. Moulder, “Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data”, Physical Electronics Division, Perkin-Elmer Corporation (1992).
[11] Ari Deibert Palczewski, “Angle-resolved photoemission spectroscopy studies of cuprate superconductor” Ph. D. Thesis, Iowa State University (2010).
[12] John Singleton,“Band Theory and Electronic Properties of Solids”, Oxford University Press. (2005).
[13] F.J. Himpsel, Advances in Physics, 32, 151(1983).
Chapter 3
[1] J. H. Lai, “Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning Probe Microscopy and Spectroscopy.” PhD thesis, Department of Physics, Nation Cheng Kung University (2010).
[2] S. H. Su, “The structural and chemical properties of Co growth on ZnO(10-10) surface.” PhD thesis, Department of Physics, Nation Cheng Kung University (2013).
[3] H. H. Chen, “The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene.” PhD thesis, Department of Physics, Nation Cheng Kung University (2015).
Chapter 4
[1] Liu, Y., M. Weinert, and L. Li. "Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi 2 Se 3 on epitaxial graphene/SiC (0001)." Physical review letters 108.11 (2012): 115501.
[2] Cheng, Peng, et al. "Landau quantization of topological surface states in Bi 2 Se 3." Physical Review Letters 105.7 (2010): 076801.
[3] Chang, Cui-Zu, et al. "Band engineering of Dirac surface states in topological-insulator-based van der Waals heterostructures." Physical review letters 115.13 (2015): 136801.
[4] Zhang, K. F., et al. "Strongly compressed Bi (111) bilayer films on Bi2Se3 studied by scanning tunneling microscopy." Applied Physics Letters 107.12 (2015): 121601.
[5] Mönig, H., et al. "Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations." Physical Review B 72.8 (2005): 085410.
[6] Jin, Kyung-Hwan, Han Woong Yeom, and Seung-Hoon Jhi. "Band structure engineering of topological insulator heterojunctions." Physical Review B 93.7 (2016): 075308.
校內:2018-02-28公開