簡易檢索 / 詳目顯示

研究生: 陳聖文
Chen, Sheng-Wen
論文名稱: 二維拓樸絕緣體雙層鉍及單層錫烯的制備及物理特性之研究
The study of physical properties and fabrication of two dimension topological insulators Bismuth bilayer and Stanene
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 二維拓樸絕緣體硒化鉍量子穿隧顯微鏡角分辨光電子能譜錫烯鉍雙層結構
外文關鍵詞: 2D Topological Insulator, Stanene, Bismuth Bilayer, Scanning Tunneling Microscope, Angle-resolved photoemission spectroscopy, Bismuth Selenide
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗分為兩個部分,第一,利用氫原子蝕刻三維拓樸絕緣體硒化鉍薄膜的方式,在表面形成二維拓樸絕緣體雙層鉍(111)結構。第二,進一步將錫蒸鍍於雙層鉍/硒化鉍系統,成長出單層二維拓樸絕緣錫烯。秀過量子穿隧顯微鏡(STM)以及角分辨光電子能譜(ARPES),分析其成長機制、能帶及表面結構。
    在雙層鉍部分,量子穿隧顯微鏡觀察到在不同通量氫原子蝕刻的變化過程,最終在硒化鉍表面生成雙層鉍(111),在能帶結構上也與理論計算相符。
    在錫烯部分,成功把錫烯成長在雙層鉍/硒化鉍系統,從量子穿隧顯微鏡觀察到蜂巢狀的結構。

    The experiment include two parts, First, two dimensional Bi(111) bilayer (BL) are prepared on Bi2Se3 by hydrogen atom etching. Secondly, further deposit tin on Bi BL/Bi2Se3 to grow two dimensional stanene. Scanning tunneling microscope (STM) and angle-resolved photoemission spectroscopy (ARPES) were used to analyze the etching mechanism and its band structure.
    For Bi BL, we observed the revolution process with varied hydrogen dosing by STM and eventually form a sigle bismuth (111) bilayer on Bi2Se3.
    Regarding stanene, we successfully grew the stanene on BL/ Bi2Se3 ,the honeycomb structure observed by STM strongly support our finding.

    摘要 I Abstract II Acknowledgements III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 The development of Topological Insulators 1 1.2 Properties of Topological Insulators 3 1.3 Three dimensional Topological Insulators - Bi2Se3 6 1.4 Review of Two dimensional Topological Insulators 7 1.4.1 Stanene 8 1.4.2 Bi (111) bilayer 12 1.5 Motivation 16 1.6 Reference 17 Chapter 2 Theoretical aspects of instrumentation 19 2.1 Scanning Tunneling Microscopy 19 2.1.1 Theory of Tunneling [1-2] 19 2.2 Scanning Tunneling Spectroscopy (STS) [1,3] 23 2.2.1 I(V) Spectroscopy 23 2.2.2 Lock-In technique 24 2.3 Molecular Beam Epitaxy (MBE) 26 2.3.1 Growth Mode 26 2.3.2 Growth Theory [7-9] 27 2.4 Synchrotron Light Source 28 2.4.1 X-ray Photoelectron Spectroscopy (XPS) [10] 29 2.4.2 Angle-Resolved Photoemission Spectroscopy (ARPES) [18-19] 30 2.5 References 31 Chapter 3 Experimental equipment 33 3.1 JEOL SPM System 33 3.1.1 EFM3 Evaporator 35 3.1.2 Hydrogen Cracker 37 3.1.3 Preparation of STM tip 37 3.1.4 STM scanning 39 3.2 National Synchrotron Radiation Research Center - NSRRC 39 3.3 Reference 40 Chapter 4 Experiment 41 4.1 MBE growth Bi2Se3 41 4.1.1 Structural Properties 41 4.1.2 Electronic properties 44 4.2 Part 1 - Tin on Bi2Se3 46 4.2.1 Results 46 4.3 Part 2 - Bi(111)/Bi2Se3 47 4.3.1 Results 47 4.4 Part 3 - Tin on Bi(111)/Bi2Se3 54 4.5 Reference 55 Chapter 5 Conclusion 56

    Chapter 1
    [1] X. L. Qi and S. C. Zhang, Phys. Today, 63, 33 (2010).
    [2] S. Murakami, et al., Science, 301, 1348 (2003).
    [3] J. Sinova, et al., Phys. Rev. Lett., 92, 126603 (2004).
    [4] C.L. Kane and E.J. Mele, Phys. Rev. Lett., 95, 226801 (2005).
    [5] B.A. Bernevig, et al., Science, 314, 1757 (2006).
    [6] Markus König, et al., Science, 319, 766 (2007).
    [7] C.L. Kane and E.J. Mele, Phys. Rev. Lett., 95, 146802 (2005).
    [8] L. Fu and C.L. Kane, Phys. Rev. B, 76, 045302 (2007).
    [9] D. Hsieh, et al., Nature, 452, 970 (2008).
    [10] H. Zhang, et al., Nature Phys., 5, 438 (2009).
    [11] Y. Xia, et al., Nature Phys., 5, 398 (2009).
    [12] D. Hsieh, et al., Phys. Rev. Lett., 103, 146401 (2009).
    [13] Z. Liu, et al., Phys. Rev. Lett., 107, 136805 (2011).
    [14] S. Murakami, Phys. Rev. Lett., 97, 236805 (2006).
    [15] D. Wang, et al., J.Phys. Soc. Jpn., 82, 094712 (2013).
    [16] M. Wada, et al., Phys. Rev. B, 83, 121310 (2011).
    [17] Liu, et al., Phys. Rev. B, 84, 195430 (2011).
    [18] Y. Xu, et al., Phys. Rev. Lett., 111, 136804 (2013).
    [19] Charles Day, Physics Today, 61(1), 19 (2008).
    [20] X. L. Qi and S. C. Zhang., Physics Today, 63(1), (2010).
    [21] M. Z. Hasan, et al., Annu. Rev. Condens.Matter Phys., 2,55 (2011).
    [22] C. Kane and J. Moore, Physics World, 32 (2009).
    [23] W. Richter, et al., Phys. Status Solidi. B, 84, 619 (1977).
    [24] G. H. Zhang, et al., Applied Physics Letters, 95, 053114 (2009).
    [25] C. L. Song, et al., Applied Physics Letters, 97, 143118 (2010).
    [26] S. Nakajima, J. Phys. Chem. Solids, 24, 479 (1962).
    [27] Natl. Bur. Stand. (U.S.) Monogr., 25, vol. 18, page 16 (1981).
    [28] Bhimanapati, et al,. ACS nano, 9(12), (2015).
    [29] Cahangirov, et al., Phys. Rev. Lett., 102(23), (2009).
    [30] Balendhran, et al., Small, 11(6), (2015).
    [31] Matthes, et al., J.Phys. Condens.Matter 25, 395305 (2013).
    [32] Zhu, F. f., et al., Nat Mater, 14, 1020-1025 (2015).
    [33] Mönig, H., et al., Physical Review B, 72, 085410 (2005).
    [34] T. nagao, et al., Phys. Rev. Lett., 93, 105501 (2004).
    [35] K. Zhang, et al., J.Phys. Condens.Matter, 24,435502 (2012).
    [36] M. X. Wang, et al., Science, 336, 52-55 (2012).
    [37] L. Miao, et al., Proc. Natl. Acad. Sci., 110, 2758-2762 (2013).
    [38] M. Chen, et al., Phys. Rev. Lett., 101, 081603 (2012).
    [39] T. Hirahara, et al., Phys. Rev. Lett., 97, 146803 (2006).
    [40] K.Govaerts, et al., Phys. Rev. B, 90, 155124 (2014).
    [41] K. F. Zhang, et al., Applied Physics Letters, 107, 121601 (2015).
    [42] Shokri, R., et al., Phys. Rev. B, 91, 205430 (2015).

    Chapter 2
    [1] Ada Della Pia ; Giovanni Costantini. “Scanning Tunneling Microscopy”, G. Bracco, B. Holst (eds.), Surface Science Techniques, Springer Series in Surface Sciences 51,Springer-Verlag Berlin Heidelberg 2013
    [2] M. Ternes, “scanning tunneling spectroscopy at the single atom scale.” PhD thesis, École Polytechnique Fédérale de Lausanne(2006)
    [3] H. H. Chen, “The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene.” PhD thesis, Department of Physics, Nation Cheng Kung University (2015).
    [4] J.C.A. Huang, Ph. D. Thesis, University of Illinoia
    [5] B. Heinrich, J.A.C Bland, Ultrathin Magneic Structure I, Springer-Verlag, New York (1994)
    [6] P. H. Chen, “Epitaxial Growth and Structural Characterization of Single Crystalline Bi2Te3/Bi2Se3 Topological Insulator Multilayer” Master thesis, Department of Physics, Nation Cheng Kung University (2013).
    [7] S. A. Chambers, Surface Science Report, 39, 105 (2000).
    [8] Oura, K.; V.G. Lifshits; A.A. Saranin; A.V. Zotov; M. Katayama (2003). Surface Science: An Introduction. Berlin: Springer.
    [9] Pimpinelli, Alberto; Jacques Villain (1998). Physics of Crystal Growth. Cambridge: Cambridge University Press

    [10] John F. Moulder, “Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data”, Physical Electronics Division, Perkin-Elmer Corporation (1992).
    [11] Ari Deibert Palczewski, “Angle-resolved photoemission spectroscopy studies of cuprate superconductor” Ph. D. Thesis, Iowa State University (2010).
    [12] John Singleton,“Band Theory and Electronic Properties of Solids”, Oxford University Press. (2005).
    [13] F.J. Himpsel, Advances in Physics, 32, 151(1983).

    Chapter 3
    [1] J. H. Lai, “Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning Probe Microscopy and Spectroscopy.” PhD thesis, Department of Physics, Nation Cheng Kung University (2010).
    [2] S. H. Su, “The structural and chemical properties of Co growth on ZnO(10-10) surface.” PhD thesis, Department of Physics, Nation Cheng Kung University (2013).
    [3] H. H. Chen, “The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene.” PhD thesis, Department of Physics, Nation Cheng Kung University (2015).

    Chapter 4
    [1] Liu, Y., M. Weinert, and L. Li. "Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi 2 Se 3 on epitaxial graphene/SiC (0001)." Physical review letters 108.11 (2012): 115501.
    [2] Cheng, Peng, et al. "Landau quantization of topological surface states in Bi 2 Se 3." Physical Review Letters 105.7 (2010): 076801.
    [3] Chang, Cui-Zu, et al. "Band engineering of Dirac surface states in topological-insulator-based van der Waals heterostructures." Physical review letters 115.13 (2015): 136801.
    [4] Zhang, K. F., et al. "Strongly compressed Bi (111) bilayer films on Bi2Se3 studied by scanning tunneling microscopy." Applied Physics Letters 107.12 (2015): 121601.
    [5] Mönig, H., et al. "Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations." Physical Review B 72.8 (2005): 085410.
    [6] Jin, Kyung-Hwan, Han Woong Yeom, and Seung-Hoon Jhi. "Band structure engineering of topological insulator heterojunctions." Physical Review B 93.7 (2016): 075308.

    無法下載圖示 校內:2018-02-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE