簡易檢索 / 詳目顯示

研究生: 隋佳菱
Sui, Chia-Ling
論文名稱: 哺乳動物睪丸細胞受高劑量雌激素調控KLF10表現導致細胞凋亡
High-dose 17β-estradiol induces cellular apoptosis through modulating the expression of KLF10 in mammalian testicular cells
指導教授: 張虹書
Chang, Hung-Shu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 雌激素細胞凋亡
外文關鍵詞: estrogen, apoptosis, KLF10
相關次數: 點閱:126下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雌激素在人體內是重要的固醇類荷爾蒙,其中17β-estradiol (E2)為人體內表現量最多的一種雌激素,大部分研究亦以此種雌激素為探討目標;已知雌激素在多數細胞會經由雌激素受體調控細胞增生及抑制細胞凋亡,然而另一方面,多數研究亦同樣顯示雌激素會造成乳癌細胞的凋亡;雌激素主要藉由雌激素受體α和β作為媒介調控不同的訊息傳遞路徑,並可進一步細分成estrogen response element (ERE)依賴性機制和ERE非依賴性機制,在ERE非依賴性機制中的調控路徑種類包括有:雌激素受體受刺激後與其協同因子一同進行基因調控,或者由激酶瀑布性效應而活化轉錄因子的基因調控。已知KLF10為雌激素、TGFβs (TGFβ1-3)、表皮生長因子 (EGF)和骨型態發生蛋白(BMP-2)所引發表現的一種轉錄因子,TGFβ1調控KLF10的機制已廣泛被研究,已知KLF10在細胞內部的表現增加會產生類似TGFβ1加入的效應,其會抑制表皮細胞的增生且增加細胞凋亡,由以上可知KLF10在TGFβ1所引導的訊息傳遞路徑中扮演重要角色,但雌激素與KLF10之間的關係則尚未明瞭。
    本研究使用小鼠睪丸組織細胞株作為實驗探討的材料,分別為具有雌激素受體α和β的萊迪吉氏細胞株-TM3(+/+)及只具有雌激素受體β的賽透力氏細胞株-TM4(-/+),運用此兩種細胞分析KLF10是否在高劑量雌激素所造成細胞凋亡過程中扮演重要角色。藉由存活率分析(MTT assay)測試不同劑量的雌激素對於兩種細胞株的影響,發現使用高劑量雌激素處理時(>10 μM),兩種細胞的存活率皆顯著下降,且在免疫螢光染色實驗中發現兩者皆有Cytochrome C自粒線體釋放的情形,因此兩者細胞在高雌激素存在下皆有發生細胞凋亡的現象;然而,進一步以細胞流式儀(Flow cytometry)分析兩者細胞週期時,卻發現高劑量雌激素使TM3細胞株的細胞週期偏向停留於G2/M時期,而TM4細胞株卻會直接趨使細胞凋亡;試驗以西方墨點轉漬法(Western blot)觀察KLF10蛋白質的表現,發現在TM4細胞株中KLF10蛋白質的表現量隨著雌激素劑量增加而有提升的現象,而TM3細胞株則無此現象,將TM4細胞株僅過量表現KLF10蛋白質時,即會促使類似高劑量雌激素所引起的細胞凋亡,而以shRNA抑制Klf10基因表現時,則可避免被高劑量雌激素所誘導之細胞凋亡;在探討KLF10調控機制時,以即時定量聚合酶連鎖反應(Real-time PCR)測定TM4細胞Klf10 mRNA表現,當加入高劑量雌激素30分鐘後表現量即上升,且於Klf10啟動子活化分析實驗(Luciferase assay)中亦發現高劑量雌激素刺激之下可活化Klf10,因此推論Klf10可經由高劑量雌激素刺激而提高轉錄表現量;已知雌激素除了核內基因體路徑(genomic pathway)調控之外,也會透過非核內基因體路徑(non-genomic pathway)引發訊息傳遞路徑,因此利用轉譯抑制藥物(Cycloheximide)以抑制蛋白新生成,且分析KLF10蛋白質於雌激素加入下的表現,由結果可知高劑量雌激素可能會經由核內非基因體路徑調控KLF10蛋白質的增加,其可能與MAPK磷酸化KLF10上特殊位點以增加其穩定性有關,但相關的機制需再進一步探討。
    本研究發現當TM4細胞株受高劑量雌激素的刺激時,會經由雌激素受體β增加KLF10蛋白質的表現,進而促使TM4細胞株走向凋亡,此結果不僅發現另一種高劑量雌激素造成細胞凋亡的訊息傳遞路徑,對於高劑量雌激素造成男性生殖系統上的影響也可略為了解。

    Estrogens are important steroid hormones in human. Among them, 17β-estradiol (E2) is the most abundant estrogen in the physiological metabolism of human, and this type estrogen is the major topic for molecular study. Estrogen has been demonstrated to stimulate growth and inhibit apoptosis through estrogen receptor-mediated mechanisms in many cell types. However, there is strong evidence shows another dimension for estrogen action of which estrogen induces apoptosis in breast cancer cells. Estrogen has previously known that regulates various signaling transduction pathways mainly through estrogen receptor α and β. To further group the mechanism of estrogen, it can be distributed to two mechanisms which are estrogen response element (ERE)-dependent and ERE-independent. One of them, ERE-independent mechanism involves the binding of nuclear ER to co-activator and activation of transcriptional factor by the kinase cascade through the ER on the plasma membrane within the indirectly regulating of target gene. KLF10 has been shown that it is particularly induced by estrogen, TGF-1, 2, 3, EGF and BMP-2. In compare with other cytokines, regulation of Klf10 transcription by TGF-1 has been demonstrated more. These observations indicated that the increased intracellular levels of KLF10 mimic the anti-proliferative and apoptotic effects of TGF-β1 on epithelial cell growth, suggesting that KLF10 is an important factor for mediating TGF-β1 signaling, but within estrogen signaling is still unknown.
    In order to find out the role of KLF10 in estrogen signaling, the mouse testicular cell lines were used which are the Leydig cell line-TM3 (ERα/β, +/+) and Sertoli cell line-TM4 (ERα/β, -/+) with different estrogen receptor component. Using these two cell lines to observe whether the KLF10 plays an important role in high-dose estrogen induced apoptosis through a serial assays including MTT, immunochemistry and flow cytometry etc. The MTT assay showed that both cell lines survival progressively decreased when treatment of different doses of estrogen. Moreover, addition of high-dose estrogen also resulted in a release of cytochrome C from mitochondria in both cell lines. However, to further analyze the cell cycle phase profile by flow cytometry, it presented that high-dose estrogen arrested the TM3 cells in the G2/M phase, but induced apoptosis merely in TM4 cells. In order to address the role of KLF10 in estrogen induced apoptosis, the expression levels of KLF10 were observed when different doses estrogen were added. The results showed that estrogen significantly induced the KLF10 expression in a dose-dependent manner in TM4, but not in TM3. When overexpressing the KLF10 protein in TM4, it induced apoptotic effect similar to high-dose estrogen dose; however, using shRNA to knock-down the expression of Klf10 rescued the high-dose estrogen-induced apoptosis. To further understand the regulation mechanism of KLF10, we used real-time PCR to analyze the expression of Klf10 mRNA in TM4. It revealed that Klf10 mRNA was rapidly increased within 30 mins of high-dose estrogen treatment. This transcriptional increase was further be verified by luciferase assay in TM4. Besides the well-documented genomic pathways, biological effects of estrogen can also be mediated by a non-genomic pathway control. Base on this possibility, this study also applied a translational inhibitor (Cycloheximide) to block protein synthesis, and then detected the level of KLF10 after estrogen treatment. The results showed that both genomic and non-genomic effects of estrogen exhibited a significantly increased or stabilized expression of KLF10. The non-genomic effect of estrogen may affect the KLF10 level through phosphorylating KLF10 on a specific site by a MAPK-dependent pathway. However, more experiments are needed to do for this hypothesis.
    The results not only show that induction of KLF10 gene expression is one of the high-dose estrogen-induced apoptosis signaling pathways but also showed the important impacts of male reproductive system triggered by high-dose estrogen.

    謝誌 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 VIII 縮寫檢索表 IX 壹、 文獻檢討 1 一、 雌激素(estrogen)在細胞凋亡中所扮演角色 1 二、 KLF10在細胞凋亡中所扮演角色 6 貳、 實驗目的 10 參、 材料與方法 11 一、 細胞培養 11 二、 載體的構築(Construction) 13 三、 轉染(transfection) 質體至細胞 19 四、 RNA抽取(組織抽取、細胞抽取) 20 五、 反轉錄聚合酶連鎖反應(Reverse transcriptase-PCR, RT-PCR) 21 六、 即時定量聚合酶連鎖反應(Real-Time PCR) 21 七、 免疫螢光染色(Immunocytochemistry) 22 八、 免疫組織化學染色(Immunohistochemistry) 23 九、 蛋白質抽取 25 十、 蛋白質濃度的定量 25 十一、 鈉十二烷基硫酸鹽聚丙烯酰胺凝膠電泳(SDS-PAGE) 26 十二、 西方墨點轉漬法 27 十三、 細胞存活率分析(MTT assay) 29 十四、 啟動子活性分析(Luciferase assay) 30 十五、 細胞週期同步化(Synchronization)及雌激素處理 31 十六、 細胞流式儀(Flow cytometry)分析 31 十七、 細胞流式儀分析Caspase 3活性 32 十八、 統計方法 33 肆、 實驗結果 34 一、 探討雌激素對於具不同雌激素受體的細胞株是否造成細胞凋亡 34 二、 探討Klf10基因及KLF10蛋白質在細胞凋亡中所扮演的角色 35 三、 探討雌激素如何調控Klf10基因及KLF10蛋白質的表現 37 四、 探討於不同的細胞週期時高劑量雌激素對於KLF10蛋白質表現的影響 39 伍、 討論 41 一、 分析雌激素劑量與其對細胞週期的影響 41 二、 分析KLF10於細胞株中的表現量及其可能影響的生理功能 42 三、 以TM4為目標並分析KLF10於細胞凋亡中所扮演角色 43 四、 分析高劑量雌激素調控Klf10基因及KLF10蛋白的機制 44 五、 分析高劑量雌激素對於處於G2/M時期的細胞中KLF10蛋白質的影響 46 六、 探討高劑量雌激素對於男性生殖系統的影響 47 陸、 參考文獻 48

    Aizu-Yokota, E., K. Ichinoseki, et al. (1994). "Microtubule disruption induced by estradiol in estrogen receptor-positive and -negative human breast cancer cell lines." Carcinogenesis 15(9): 1875-1879.
    Altiok, N., M. Koyuturk, et al. (2007). "JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells." Breast Cancer Res Treat 105(3): 247-254.
    Assikis, V. J. and V. C. Jordan (1995). "Gynecologic effects of tamoxifen and the association with endometrial carcinoma." Int J Gynaecol Obstet 49(3): 241-257.
    Auger, J., J. M. Kunstmann, et al. (1995). "Decline in semen quality among fertile men in Paris during the past 20 years." N Engl J Med 332(5): 281-285.
    Beatson, C. T. (1896). "On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases." Lancet 2: 101-111.
    Bender, H., Z. Wang, et al. (2004). "TIEG1 facilitates transforming growth factor-beta-mediated apoptosis in the oligodendroglial cell line OLI-neu." J Neurosci Res 75(3): 344-352.
    Budtz, P. E. (1999). "Role of proliferation and apoptosis in net growth rates of human breast cancer cells (MCF-7) treated with oestradiol and/or tamoxifen." Cell Prolif 32(5): 289-302.
    Catalano, S., P. Rizza, et al. (2007). "Fas ligand expression in TM4 Sertoli cells is enhanced by estradiol "in situ" production." J Cell Physiol 211(2): 448-456.
    Cha, H., X. Wang, et al. (2007). "A functional role for p38 MAPK in modulating mitotic transit in the absence of stress." J Biol Chem 282(31): 22984-22992.
    Chen, G. G., H. Xu, et al. (2003). "15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway." Int J Cancer 107(5): 837-843.
    Cheng, B., J. Song, et al. (2009). "Responses of vascular smooth muscle cells to estrogen are dependent on balance between ERK and p38 MAPK pathway activities." Int J Cardiol 134(3): 356-365.
    Cook, T., B. Gebelein, et al. (1999). "Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins." J Biol Chem 274(41): 29500-29504.
    Cook, T., B. Gebelein, et al. (1998). "Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth." J Biol Chem 273(40): 25929-25936.
    Cook, T., B. Gebelein, et al. (1999). "Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors." Ann N Y Acad Sci 880: 94-102.
    Cook, T. and R. Urrutia (2000). "TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth." Am J Physiol Gastrointest Liver Physiol 278(4): G513-521.
    Delbes, G., C. Levacher, et al. (2005). "Endogenous estrogens inhibit mouse fetal Leydig cell development via estrogen receptor alpha." Endocrinology 146(5): 2454-2461.
    Delbes, G., C. Levacher, et al. (2006). "Estrogen effects on fetal and neonatal testicular development." Reproduction 132(4): 527-538.
    Delbes, G., C. Levacher, et al. (2004). "Estrogen receptor beta-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life." Endocrinology 145(7): 3395-3403.
    Ding, Q., R. Gros, et al. (2009). "Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30." Am J Physiol Cell Physiol 297(5): C1178-1187.
    Eid, M. A., M. V. Kumar, et al. (1998). "Expression of early growth response genes in human prostate cancer." Cancer Res 58(11): 2461-2468.
    Ellenrieder, V., J. S. Zhang, et al. (2002). "Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor." EMBO J 21(10): 2451-2460.
    Ellis, M. J., F. Gao, et al. (2009). "Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study." JAMA 302(7): 774-780.
    Fautsch, M. P., A. Vrabel, et al. (1998). "TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters." Genomics 51(3): 408-416.
    Ferro, M. A., D. Gillatt, et al. (1989). "High-dose intravenous estrogen therapy in advanced prostatic carcinoma. Use of serum prostate-specific antigen to monitor response." Urology 34(3): 134-138.
    Filardo, E. J., J. A. Quinn, et al. (2000). "Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF." Mol Endocrinol 14(10): 1649-1660.
    Filippini, A., A. Riccioli, et al. (2001). "Control and impairment of immune privilege in the testis and in semen." Hum Reprod Update 7(5): 444-449.
    Fisher, B., J. P. Costantino, et al. (1998). "Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study." J Natl Cancer Inst 90(18): 1371-1388.
    Ginsburg, E. S., X. Gao, et al. (1998). "Half-life of estradiol in postmenopausal women." Gynecol Obstet Invest 45(1): 45-48.
    Gottardis, M. M., S. P. Robinson, et al. (1988). "Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse." Cancer Res 48(4): 812-815.
    Haddow A, W. J., Paterson E (1944). "Influence of synthetic oestrogens upon advanced malignant disease." BMJ 2: 393-398.
    Hawse, J. R., M. Subramaniam, et al. (2008). "Estrogen receptor beta isoform-specific induction of transforming growth factor beta-inducible early gene-1 in human osteoblast cells: an essential role for the activation function 1 domain." Mol Endocrinol 22(7): 1579-1595.
    Hefferan, T. E., G. G. Reinholz, et al. (2000). "Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells." J Biol Chem 275(27): 20255-20259.
    House, C. M., I. J. Frew, et al. (2003). "A binding motif for Siah ubiquitin ligase." Proc Natl Acad Sci U S A 100(6): 3101-3106.
    Huang, C., W. Y. Ma, et al. (1999). "p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389." J Biol Chem 274(18): 12229-12235.
    Ingle, J. N., D. L. Ahmann, et al. (1981). "Randomized clinical trial of diethylstilbestrol versus tamoxifen in postmenopausal women with advanced breast cancer." N Engl J Med 304(1): 16-21.
    Iwase, H. (2008). "Current topics and perspectives on the use of aromatase inhibitors in the treatment of breast cancer." Breast Cancer 15(4): 278-290.
    Jenkins, J. K., S. Suwannaroj, et al. (2001). "17-beta-estradiol alters Jurkat lymphocyte cell cycling and induces apoptosis through suppression of Bcl-2 and cyclin A." Int Immunopharmacol 1(11): 1897-1911.
    Jiang, L., Y. Chen, et al. (2009). "Down-regulation of stathmin is required for TGF-beta inducible early gene 1 induced growth inhibition of pancreatic cancer cells." Cancer Lett 274(1): 101-108.
    Johnsen, S. A., M. Subramaniam, et al. (2002). "Modulation of transforming growth factor beta (TGFbeta)/Smad transcriptional responses through targeted degradation of TGFbeta-inducible early gene-1 by human seven in absentia homologue." J Biol Chem 277(34): 30754-30759.
    Jordan, V. C. (1976). "Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata." Eur J Cancer 12(6): 419-424.
    Jordan, V. C., M. K. Lababidi, et al. (1991). "Suppression of mouse mammary tumorigenesis by long-term tamoxifen therapy." J Natl Cancer Inst 83(7): 492-496.
    Jun, D. Y., H. S. Park, et al. (2008). "17Alpha-estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells." Toxicol Appl Pharmacol 231(3): 401-412.
    Kobori, N., G. L. Clifton, et al. (2002). "Altered expression of novel genes in the cerebral cortex following experimental brain injury." Brain Res Mol Brain Res 104(2): 148-158.
    Kuiper, G. G., B. Carlsson, et al. (1997). "Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta." Endocrinology 138(3): 863-870.
    Lassurguere, J., G. Livera, et al. (2003). "Time- and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture." Toxicol Sci 73(1): 160-169.
    Legewie, S., N. Bluthgen, et al. (2006). "Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability." PLoS Comput Biol 2(9): e120.
    Lewis-Wambi, J. S. and V. C. Jordan (2009). "Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?" Breast Cancer Res 11(3): 206.
    Lewis, J. S., K. Meeke, et al. (2005). "Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation." J Natl Cancer Inst 97(23): 1746-1759.
    Li, Z., J. Li, et al. (2008). "Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway." Toxicol In Vitro 22(7): 1749-1753.
    Licznar, A., S. Caporali, et al. (2003). "Identification of genes involved in growth inhibition of breast cancer cells transduced with estrogen receptor." FEBS Lett 553(3): 445-450.
    Lonning, P. E., P. D. Taylor, et al. (2001). "High-dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy." Breast Cancer Res Treat 67(2): 111-116.
    Luo, X., L. Ding, et al. (2005). "Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta." Endocrinology 146(3): 1097-1118.
    Madeo, A., M. Vinciguerra, et al. "c-Jun activation is required for 4-hydroxytamoxifen-induced cell death in breast cancer cells." Oncogene 29(7): 978-991.
    Mandlekar, S. and A. N. Kong (2001). "Mechanisms of tamoxifen-induced apoptosis." Apoptosis 6(6): 469-477.
    Mandlekar, S., R. Yu, et al. (2000). "Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells." Cancer Res 60(21): 5995-6000.
    Mitsumoto, M., A. Mitsumoto, et al. (2003). "Nitric oxide-mediated upregulation of the TGF-beta-inducible early response gene-1 (TIEG1) in human fibroblasts by mRNA stabilization independent of TGF-beta." Free Radic Biol Med 34(12): 1607-1613.
    Mor G, K. F., Garcia-Velasco J, Nilsen J, Brown W, Song J, Naftolin F. (2000). "Regulation of fas ligand expression in breast cancer cells by estrogen: functional differences between estradiol and tamoxifen." J Steroid Biochem Mol Biol. 73(5): 185-194.
    Nilsen, J., G. Mor, et al. (2000). "Estrogen-regulated developmental neuronal apoptosis is determined by estrogen receptor subtype and the Fas/Fas ligand system." J Neurobiol 43(1): 64-78.
    Noti, J. D., A. K. Johnson, et al. (2004). "The zinc finger transcription factor transforming growth factor beta-inducible early gene-1 confers myeloid-specific activation of the leukocyte integrin CD11d promoter." J Biol Chem 279(26): 26948-26958.
    Noti, J. D., A. K. Johnson, et al. (2005). "The leukocyte integrin gene CD11d is repressed by gut-enriched Kruppel-like factor 4 in myeloid cells." J Biol Chem 280(5): 3449-3457.
    O'Donnell, L., K. M. Robertson, et al. (2001). "Estrogen and spermatogenesis." Endocr Rev 22(3): 289-318.
    Okasha, S. A., S. Ryu, et al. (2001). "Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus." Toxicology 163(1): 49-62.
    Paruthiyil, S., H. Parmar, et al. (2004). "Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest." Cancer Res 64(1): 423-428.
    Paulson, D. F. (1984). "Carcinoma of the prostate: the therapeutic dilemma." Annu Rev Med 35: 341-372.
    Ribeiro, A., S. F. Bronk, et al. (1999). "The transforming growth factor beta(1)-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress." Hepatology 30(6): 1490-1497.
    Robertson, C. N., K. M. Roberson, et al. (1996). "Induction of apoptosis by diethylstilbestrol in hormone-insensitive prostate cancer cells." J Natl Cancer Inst 88(13): 908-917.
    Roswall, P., S. Bu, et al. (2006). "2-methoxyestradiol induces apoptosis in cultured human anaplastic thyroid carcinoma cells." Thyroid 16(2): 143-150.
    Saintier, D., V. Khanine, et al. (2006). "Estradiol inhibits adhesion and promotes apoptosis in murine osteoclasts in vitro." J Steroid Biochem Mol Biol 99(4-5): 165-173.
    Schaeffer, H. J. and M. J. Weber (1999). "Mitogen-activated protein kinases: specific messages from ubiquitous messengers." Mol Cell Biol 19(4): 2435-2444.
    Smith, C. L., Z. Nawaz, et al. (1997). "Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen." Mol Endocrinol 11(6): 657-666.
    Song, R. X., G. Mor, et al. (2001). "Effect of long-term estrogen deprivation on apoptotic responses of breast cancer cells to 17beta-estradiol." J Natl Cancer Inst 93(22): 1714-1723.
    Strohsnitter, W. C., K. L. Noller, et al. (2001). "Cancer risk in men exposed in utero to diethylstilbestrol." J Natl Cancer Inst 93(7): 545-551.
    Subramaniam, M., S. A. Harris, et al. (1995). "Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts." Nucleic Acids Res 23(23): 4907-4912.
    Subramaniam, M., J. R. Hawse, et al. (2007). "Role of TIEG1 in biological processes and disease states." J Cell Biochem 102(3): 539-548.
    Subramaniam, M., T. E. Hefferan, et al. (1998). "Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene." J Cell Biochem 68(2): 226-236.
    Tachibana, I., M. Imoto, et al. (1997). "Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells." J Clin Invest 99(10): 2365-2374.
    Wang, Z., B. Peters, et al. (2004). "Gene structure and evolution of Tieg3, a new member of the Tieg family of proteins." Gene 325: 25-34.
    Xia, Z., M. Dickens, et al. (1995). "Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis." Science 270(5240): 1326-1331.
    Yang, Y., X. Pan, et al. (2006). "Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism." Oncogene 25(55): 7235-7244.
    Yang, Z., B. Cheng, et al. (2007). "Estrogen accelerates G1 to S phase transition and induces a G2/M phase-predominant apoptosis in synthetic vascular smooth muscle cells." Int J Cardiol 118(3): 381-388.
    Zhang, C. C. and D. J. Shapiro (2000). "Activation of the p38 mitogen-activated protein kinase pathway by estrogen or by 4-hydroxytamoxifen is coupled to estrogen receptor-induced apoptosis." J Biol Chem 275(1): 479-486.
    Zhang, J. S., M. C. Moncrieffe, et al. (2001). "A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A." Mol Cell Biol 21(15): 5041-5049.
    Zhou, W., Q. Yang, et al. (2009). "Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process." J Biol Chem 284(36): 23980-23988.

    下載圖示 校內:2011-07-27公開
    校外:2011-07-27公開
    QR CODE