簡易檢索 / 詳目顯示

研究生: 施伯欣
shi, Po-shin
論文名稱: 探討微正則系綜與正則系綜間的等價性
Discussion on the Equivalence of Microcanonical Ensemble and Canonical Ensemble
指導教授: 陳家駒
Chen, Chia-Chu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 51
中文關鍵詞: 系綜不等價Ising模型
外文關鍵詞: Inequivalence of Ensembles, Ising model
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般認為,使用不同的系綜來處理同一個物理系統時仍能得到相同的物理量,但在近年來的研究顯示,此一現象並不一定成立。
    本篇論文主要是在探討系綜不等價的現象,我們討論了該現象發生的機制,並引用兩個簡單的模型來了解系綜不等價的現象,此外,我們檢驗了Ising模型在微正則系綜與正則系綜間的等價性,並得到Ising模型在此二系綜間不等價的結果。

    In statistical mechanics, the same equilibrium properties can be obtained by applying different ensembles to calculate the same physical system. However, some authors recently demonstrated that the argument is not necessary to be true for all systems.
    In this thesis, we would like to discuss the mechanism of the phenomenon in which the predictions obtained are nonequivalent. We also introduce an example of two simple models in order to reexamine whether their ensembles are equivalent. In addition, we study on the Ising model in microcanonical ensemble and canonical ensemble to illustrate that the results obtained by using these two ensembles are nonequivalent.

    第一章 諸論 ....................... 6 1.1 引言.......................... 6 1.2 微正則系綜 .................... 7 1.3 正則系綜 ..................... 9 1.4 簡諧震盪系統 .................. 10 1.5 順磁性系統 .................... 13 第二章 系綜的不等價性 ............... 16 2.1 非凹函數 ..................... 16 2.2 雙態模型 ..................... 18 2.3 雙堆模型 ..................... 20 第三章 探討Ising模型中系綜的等價性 ... 23 3.1 長程作用力的Ising模型 ......... 23 3.2 探討一維Ising模型的組態 ........ 29 3.3 驗證一維Ising模型的簡併數 ....... 39 3.4 探討一維Ising模型中系綜的等價性 .. 44 第四章 結論 ....................... 50 參考文獻 ......................... 51

    [ 1 ] J. W. Gibbs, Elementary Principles in Statistical Mechanics.
    [ 2 ] W. Thirring, Z. Phys. 235, 339 (1970)
    [ 3 ] J. Barr´e, D. Mukamel, and S. Ruffo, Phys. Rev. Lett. 87,030601 (2001).
    [ 4 ] LI, Liangsheng; SHI, QingFan; ZHENG, Ning. Long-range interaction Blume-Emery-Griffiths model: Critical exponents in microcanonical ensemble. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 8: 002.
    [ 5 ] Touchette, Hugo. "Simple spin models with non-concave entropies." American Journal of Physics 76 (2008): 26.
    [ 6 ] Touchette, Hugo, Richard S. Ellis, and Bruce Turkington. "An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles."Physica A: Statistical Mechanics and its Applications 340.1 (2004): 138-146.
    [ 7 ] Costeniuc, Marius, Richard S. Ellis, and Hugo Touchette. "Nonconcave entropies from generalized canonical ensembles." Physical Review E 74.1 (2006): 010105.
    [ 8 ] R.K.Pathria , Paul D. Beale , Statistical Mechanics

    下載圖示 校內:2016-08-19公開
    校外:2016-08-19公開
    QR CODE