簡易檢索 / 詳目顯示

研究生: 黃琳清
Huang, Lin-Ching
論文名稱: 以鎳-鎂-鋁類水滑石觸媒催化二氧化碳的甲烷重組反應—自熱操作的初步研究
Methane Reforming of Carbon Dioxide over Ni-Mg-Al Catalysts — A Preliminary Study on Autothermal Operation
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 134
中文關鍵詞: 類水滑石型觸媒鈰鋯複合型氧化物觸媒自熱操作二氧化碳轉化二氧化碳甲烷重組反應
外文關鍵詞: hydrotalcite-like catalyst, methane oxidative reforming of carbon dioxide, autothermal operation, Ce-Zr mixed-oxide catalyst, carbon dioxide conversion
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由甲烷氧化重組反應,可以減少二氧化碳,且轉化為有價值的合成氣。本實驗以自熱操作為目標,利用甲烷氧化反應放出熱量,提供二氧化碳的甲烷重組反應所需熱能。研究分為兩部份,首先進行二氧化碳重組的自熱操作,除量測反應物的轉化率和生成物的選擇率外,也量測觸媒床的溫度分佈,並對進料成分比的影響予以探討,挑選出最佳的反應條件。其次,將觸媒進行各項物理及化學的鑑定,找出影響自熱反應的主要因素及氧化與重組反應的可能機制。
    本研究中,以Ce0.75Zr0.25O2 和Ni-Mg-Al 類水滑石分別進行甲烷的氧化與重組反應,發現二者分別展現其反應活性,前者適用於甲烷氧化反應產生熱能,而後者則適用於甲烷的重組反應。接著以下列三種不同的觸媒床進行二氧化碳的甲烷氧化重組反應的自熱操作實驗,其一為將Ni4Mg2Al2 類水滑石與Ce0.75Zr0.25O2 觸媒物理混合,裝填於反應器中形成混合床;另一種是將Ce0.75Zr0.25O2 置於反應器前端,Ni4Mg2Al2 類水滑石置於後端形成雙床;第三種為Ni4Mg2Al2/Ce0.75Zr0.25O2 觸媒置放於反應器中(即單一床)。
    實驗結果發現:不同的觸媒床型態在自熱反應下皆能使氧氣轉化率達95 %以上,而單一床之效果最好,可歸因於Ni4Mg2Al2/Ce0.75Zr0.25O2觸媒,由於活性點距離較接近,氧化反應放出的熱有效地傳送至Ni活性點上進行重組反應。而改變反應物進料比之實驗結果顯示:當甲烷/二氧化碳/氧氣/氬氣比例為35/21/14/30,並以400℃預熱進料的條件下,此觸媒可同時催化甲烷氧化反應與重組反應,而且觸媒床溫度分布最為均勻,避免hot spot現象產生,自熱反應效果最佳。另外進行長時間自熱測試,發現該觸媒能有效的進行熱傳遞,以提供重組反應所需的熱,並且達到穩定的熱平衡。
    最後,根據以上列觸媒所進行TPR、TPO及TPD的結果,對反應機制予以分析,並與轉化率-溫度曲線相比較,發現Ni-Mg-Al類水滑石觸媒被甲烷還原與被二氧化碳氧化皆發生於相近的溫度,證實觸媒同時具備還原態與氧化態,即二氧化碳的甲烷重組反應是遵循Mars-Van Krevelen 模式。另外,由於Ce0.75Zr0.25O2觸媒於低溫下,對甲烷與氧氣皆有強吸附力,可推測甲烷氧化反應為Langmuir–Hinshelwood模式;而在高溫下,甲烷氧化反應主要以氣相的甲烷與觸媒上的晶格氧反應,是遵循Eley-Rideal模式。

    The process of methane oxidative reforming of carbon dioxide, which reduces the amount of carbon dioxide and produces synthesis gas, is worth developing. The heat generated from oxidation of methane can supply the heat required for methane reforming of carbon dioxide. Therefore, autothermal operation for reforming reaction is possible. The objective of this study is to prepare a suitable composite catalyst and to investigate the feasibility of autothermal operation for this methane oxidation reforming reaction. The study involves two parts. First, autothermal reforming of carbon dioxide is investigated. The temperature profile along the axis of the reactor and conversions of reactants as well as the selectivities of products are measured and discussed. Second, the physical and chemical properties of catalysts were characterized for elucidating their effects on the catalytic activity and reaction mechanism.
    Results of preliminary experiments reveal that Ce0.75Zr0.25O2 catalysts are active for CH4 oxidation while Ni-Mg-Al hydrotalcite-like catalysts exhibit high activities for CH4 reforming of CO2. Subsequently, we packed catalysts into the reactor with the following three different modes and operated autothermally without external heater:
    (1) the mixture of Ce-Zr catalyst and Ni-Mg-Al catalyst – mixed bed,
    (2) the Ce-Zr catalyst and Ni-Mg-Al catalyst in series – dual bed, and
    (3) the Ni-Mg-Al/Ce-Zr composite catalyst – single bed.
    Experimental results reveal that the single bed with Ni-Mg-Al/Ce-Zr composite catalyst gives the best performance. It might be due to the active sites for both oxidation and reforming are very close in the composite catalyst. In addition, the temperature in the single bed reactor is more uniform than other modes and no hot spot is observed. With preheating the catalyst bed of Ni4Mg2Al2-CeZr to 400℃, the optimal feed ratio for autothermal reforming is CH4/CO2/O2=35/21/14. Furthermore, the catalyst shows an excellent durability during a long time autothermal test. This result suggests that the improved heat transfer provided by this composite catalyst is responsible for the better performance because energy balance can be attained.
    Because the results of CH4-TPR and CO2-TPO experiments reveal that the oxidation of methane and reduction of carbon dioxide occur at the same temperature range, and the conversion-temperature curve shows that the reforming reaction takes place at the similar temperature range. We can propose that redox of hydrotalcite-like catalyst obeys Mars-Van Krevelen mechanism. Basing on the results of TPD experiments, we can suggest that methane oxidation over Ce0.75Zr0.25O2 catalyst occurs through the Langmuir– Hinshelwood mechanism at low temperature, in which adsorbed methane and oxygen species react with one another while methane in the gas phase reacts with strongly adsorbed or lattice oxygen, occurs via the Eley-Rideal mechanism at high temperature.

    摘 要...........................................................................I ABSTRACT.......................................................................Ⅲ 誌 謝..........................................................................Ⅴ 目錄...........................................................................VI 表目錄.........................................................................IX 圖目錄..........................................................................X 第一章 緒論.....................................................................1 1-1 前言........................................................................1 1-2 研究動機....................................................................2 第二章 基本原理與文獻回顧.......................................................4 2-1 二氧化碳的減量..............................................................4 2-2 將甲烷重組反應生成合成氣....................................................4 2-3 二氧化碳的甲烷重組反應......................................................6 2-4 二氧化碳之甲烷重組反應的反應機制及動力學探討................................7 2-5 甲烷部分氧化反應的反應機制及動力學探討.....................................14 2-6 類水滑石型(Hydrotalcite-like)觸媒..........................................19 2-6-1 類水滑石型(Hydrotalcite-like)觸媒介紹................................... 19 2-6-2 類水滑石型觸媒應用在甲烷的重組反應...................................... 21 2-7 CexZr1-xO2 觸媒........................................................... 25 2-7-1 CexZr1-xO2 簡介......................................................... 25 2-7-2 以Ce-Zr-O 混合氧化物應用於甲烷的部分氧化反應............................ 29 2-8 甲烷自熱重組反應(Autothermal reforming of methane)........................ 35 第三章 藥品、儀器與實驗步驟................................................... 42 3-1 藥品與材料................................................................ 42 3-2 儀器與設備................................................................ 43 3-3 觸媒製備.................................................................. 44 3-3-1 Ce0.75Zr0.25O2 觸媒..................................................... 44 3-3-2 Ni-Mg-Al 類水滑石型(Hydrotalcite-like)觸媒.............................. 45 3-4 觸媒鑑定.................................................................. 47 3-4-1 X 光繞射分析 (X-Ray diffractometer, XRD)................................ 47 3-4-2 化學分析電子光譜 (Electron spectroscopy for chemical analysis, ESCA) ... 48 3-5 觸媒活性測試與化性分析.................................................... 49 3-5-1 程溫還原 (Temperature programmed reduction, TPR)........................ 49 3-5-2 甲烷程溫還原 (CH4-TPR) ................................................. 49 3-5-3 二氧化碳程溫氧化 (Temperature programmed oxidation, TPO) ............... 50 3-5-4 甲烷程溫脫附 (Temperature programmed desorption, TPD) .................. 50 3-5-5 氧氣程溫脫附 (O2-TPD)................................................... 51 3-5-6 氫氣程溫脫附 (H2-TPD)................................................... 51 3-5-7 活性測試................................................................ 54 3-5-8 自熱反應之活性測試...................................................... 58 第四章 觸媒的鑑定與活性測試................................................... 60 4-1 Ni-Mg-Al/Ce0.75Zr0.25O2 觸媒.............................................. 60 4-2 Ni-Mg-Al/Ce0.75Zr0.25O2 觸媒之鑑定........................................ 60 4-2-1 XPS 分析圖譜............................................................ 60 4-2-2 H2-TPR 分析圖譜......................................................... 64 4-2-3 H2-TPD 分析圖譜......................................................... 67 4-3 前處理對觸媒活性測試的影響................................................ 68 4-4 Ce0.75Zr0.25O2 和Ni-Mg-Al 類水滑石在反應中扮演之角色 ..................... 70 4-4-1 甲烷部分氧化反應........................................................ 70 4-4-2 二氧化碳之甲烷重組反應.................................................. 73 4-4-3 二氧化碳之甲烷氧化重組反應.............................................. 75 4-5 自熱反應活性測試.......................................................... 78 4-5-1 改良自熱反應系統........................................................ 78 4-5-2 以不同觸媒床型態進行二氧化碳的甲烷氧化重組自熱反應...................... 83 4-5-3 不同進料比對甲烷自熱重組反應的活性測試.................................. 86 4-5-4 自熱反應活性與觸媒鑑定之結果與討論...................................... 97 4-6 自熱反應之穩定性測試......................................................101 4-7 二氧化碳之甲烷氧化重組反應機制探討........................................104 4-7-1 二氧化碳之甲烷重組反應的機制............................................104 4-7-2 甲烷部分氧化反應的機制..................................................109 第五章 總結...................................................................113 5-1 結論......................................................................113 5-2 未來研究方向與建議........................................................114 參考文獻......................................................................115 附錄..........................................................................123 自述..........................................................................134

    [1] 工業污染防治, 第88 期, 162(2003).
    [2] 自由時報, 民國94年2月16日。
    [3] 工業污染防治, 第94 期, 117(2005).
    [4] F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbonmonoxide.”, Brennstoff Chem., 3, 39(1928).
    [5] S.G. Wang, D.B. Cao, Y.W. Li, “CO2 Reforming of CH4 on Ni (111): A Density Functional Theory Calculation.”, J. Phys. Chem. B, 110, 9976(2006).
    [6] S.G. Wang, Y.W. Li, J.X. Lu, M.Y. He, H. Jiao, “A detailed mechanism of thermal CO2 reforming of CH4.”, J. Mol. Struct. (Theochem), 673, 181(2004).
    [7] I.M. Bodrov, L.O. Apel’baum, Kinet. Catal., 8, 326(1967).
    [8] A. Erdöhelyi, J. Cserényi, E. Papp, and F. Solymosi, “Catalytic Reaction of Methane with Carbon-Dioxide over Supported Palladium.”, Appl. Catal. A: General, 108, 205(1994).
    [9] K. Walter, O.V. Buyevskaya, D. Wolf, M. Baerns, “Rhodium-Catalyzed Partial Oxidation of Methane to CO and H2 In-Situ Drifts Studies on Surface Intermediates.”, Catal. Lett., 29, 261(1994).
    [10] C.J. Micheal, M. Bredford, V. Albert, “Catalytic reforming of methane withcarbon dioxide over nickel catalysts II. Reaction kinetics.”, Appl. Catal. A, 142, 97(1996).
    [11] F. Solymosi, G. Kutsain, A. Erdohelyi, “Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals.”, Catal. Lett., 11, 149(1991).
    [12] M.C.J. Bradford, M.A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts: I. Catalyst characterization and activity.”, Appl. Catal. A, 142, 73 (1996).
    [13] G.B. Raupp, J.A. Dumesic, “Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states”, J. Phys.Chem., 89, 5240(1985).
    [14] Z.L. Zhang, X.E. Verykios, “Carbon Dioxide Reforming of Methane to Synthesis Gas over supported Ni Catalysts.”, Catal. Today, 21, 589(1994).
    [15] J. Nakamura, K. Aikawa, K. Sato, T. Uchijima, “Role of support in reforming of CH4 with CO2 over Rh catalysts.”, Catal. Lett., 25, 265(1994).
    [16] T. Shido, K. Askura, Y. Iwasawa, “Reactant-Promoted Reaction Mechanism for Catalytic Water-Gas Shift Reaction on MgO.”, J. Catal., 122, 55(1990).
    [17] J.R. Rostrup-Nielsen, H.B. Hansen , “CO2 Reforming of Methane over Transition Metals.”, J. Catal., 144, 38(1993).
    [18] G.D. Weatherbee, C.H. Bartholomew, “Effects of Support on Hydrogen Adsorption/Desorption Kinetics of Nickel.”, J. Catal., 87, 55(1984).
    [19] A.A. Lemonidou, M.A. Goula, I.A. Vasalos, “Carbon dioxide reforming of methane over 5 wt% nickel calcium aluminate catalysts - effect of preparation method”, Catal. Today, 46, 175(1998).
    [20] M.T. Tavares, I. Alstrup, C.A. Berriardo, J.R. Rostrup-Nielsen, “CO disproportionation on silica-supported nickel and nickel-copper catalysts.”, J.
    Catal., 147, 525(1994).
    [21] Z.X. Cheng, X.G. Zhao, J.L. Li, Q.M. Zhu, “Role of support in CO2 reforming of CH4 over a Ni/γ-Al2O3 catalyst.”, Appl. Catal. A: General, 205, 31(2001).
    [22] S.J. Teichner, T. Inui, K. Fujimoto, T. Uchijima, M. Masai, “New Aspects of
    Spillover Effect in Catalysis.”, Stud. Surf. Sci. Catal., 77, R5-R5(1993).
    [23] W.C. Conner, J.L. Falconer, “Spillover in Heterogeneous Catalysis.”, Chem. Rev., 95, 759(1995).
    [24] D. Wang, O. Dewaele, A.M. Degroot, G.F. Froment, “Reaction Mechanism and Role of the Support in the Partial Oxidation of Methane on Rh/Al2O3.”, J. Catal., 159, 418(2001).
    [25] A.P.E. York, T. Xiao, M.L.H. Green, “Brief Overview of the Partial Oxidation of Methane to Synthesis Gas.”, Topics Catal., 22, 345(2003).
    [26] L.V. Mattos, E.R.de Oliveira, P.D. Resende, F.B. Noronha, F.B. Passos, “Partial oxidation of methane on Pt/Ce–ZrO2 catalysts.”, Catal. Today, 77, 245(2002).
    [27] K. Seshan, H.W. ten Barge, W. Hally, A.N.J. van Keulen, J.R.H. Ross, “Carbon dioxide r eforming of methane in the presence of nickel and platinum catalysts supported on ZrO2.”, Stud. Surf. Sci. Catal., 81, 285(1994).
    [28] M. Fleys, Y. Simon, D. Swierczynski, A. Kiennemann, P.M. Marquaire, “Investigation of the Reaction of Partial Oxidation of Methane over Ni/La2CO3 Catalyst.”, Energ. Fuel, 20, 2321(2006).
    [29] Y.H. Hu, E. Ruckenstein, “Isotopic study of the reaction of methane with lattice oxygen of the NiO/MgO catalysts.”, Catal. Lett., 34, 41(1995).
    [30] J.A. Lapszewicz, X.Z. Jiang, Symp. Nat. Gas Upgrade II, 252(1992).
    [31] S.S. Bharadwaj, L.D. Schmidt, “Syngas Formation By Direct Oxidation of Methane in Fluidized Beds.”, J. Catal., 146, 11(1994).
    [32] Y.H. Hu, E. Ruckenstein, “Broadened Pulse-Step Change-Isotopic Sharp Pulse Analysis of the Mechanism of Methane Partial Oxidation to Synthesis Gas.”, J. Phys. Chem. B, 102, 230(1998).
    [33] Y. Liu, F. Y. Huang, J.M. Li, W.Z. Weng, C.R. Luo, M.L. Wang, W.S. Xia, C.J Huang, H.L. Wan, “In situ Raman study on the partial oxidation of methane to synthesis gas over Rh/Al2O3 and Ru/Al2O3 catalysts.”, J. Catal., 256, 192(2008).
    [34] R.C. Weast, M.J. Astle (Eds.), CRC Hand Book of Chemistry and Physics, 62nd ed., CRC Press Inc., Boca Raton, FL, F-184(1981).
    [35] D.A. Hickman, L.D. Schmidt, “Syngas Production by Direct Oxidation of Methane on Monoliths.”, J. Catal., 138, 267(1992).
    [36] H.Y. Wang, E. Ruckenstein, “CH4/CD4 Isotope Effect and the Mechanism of Partial Oxidation of Methane to Synthesis Gas over Rh/γ-Al2O3 Catalyst.”, J. Phys. Chem. B, 103, 11327(1999).
    [37] C. Elmasides, X.E. Verykios, “Mechanistic Study of Partial Oxidation of Methane to Synthesis Gas over Modified Ru/TiO2 Catalyst.”, J. Catal., 203, 477(2001).
    [38] W.J.M. Vermeiren, E. Blomsma, P.A. Jacobs, “Catalytic and thermodynamic approach of the oxyreforming reaction of methane.”, Catal.Today, 13, 427(1992).
    [39] V.R. Choudhary, A.S. Mamman, S.D. Sansare, “Selective Oxidation of Methane to CO and H2 over Ni/MgO at Low Temperatures.”, Angew. Chem. Int. Ed., 31, 1189(1992).
    [40] G. Fornasari, M. Gazzano, D. Matteuzzi, F. Trifiro, A. Vaccari, “Structure and Reactivity of High-surface-area Ni/Mg/Al Mixed Oxides.”, Appl. Clay Sci., 10, 69 (1995).
    [41] V.R.L. Constantino, T.J. Pinavaia, “Basic Properties of Mg2+1-xAl3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions.”, Inorg. Chem., 34, 883(1995).
    [42] 林振村, “層狀雙氫氧化物支撐衍生物之製備及催化性質”, 國立台灣大學化學系博士論文(1993).
    [43] A.I. Tsyganok, M. Inaba, T. Tsunoda, K. Suzuki, K. Takehira, T. Hayakawa, “Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg–Al mixed oxide.”, Appl. Catal. A Gen., 275, 149(2004).
    [44] K.S. Hwang, H.Y. Zhu, G.Q. Lu, “New nickel catalysts supported on highly porous alumina intercalated laponite for methane reforming with CO2.”, Catal. Today, 68, 183(2001).
    [45] F. Cavani, F. Trifiro, A. Vacari, “Hydrotalcite-type Anionic Clays: Preparation, Properties and Applications.”, Catal. Today, 11, 173(1991).
    [46] F. Basile, L. Basini, M.D. Amore, G. Fornasari, A. Guarinoni, D. Matteuzzi, G.D. Piero, F. Trifiro, A. Vaccari, “Ni/Mg/Al Anionic Clay Derived Catalysts for the Catalytic Partial Oxidation of Methane: Residence Time Dependence of the Reactivity Features.”, J.Catal., 173, 247(1998).
    [47] D. Qin, J. Lapszewicz, X. Jiang, “Comparison of Partial Oxidation and Steam-CO2 Mixed Reformingof CH4 to Syngas on MgO-Supported Metals.”, J. Catal., 159, 140(1996).
    [48] T. Shishido, M. Suke, Z. Hou, T. Yashima, “Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2.”, Appl. Catal. A Gen., 261, 205(2004).
    [49] Z. Hou, T. Yashima, “Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2.”, Appl. Catal. A Gen., 261, 205(2004).
    [50] K.M. Lee, W.Y. Lee, “Partial Oxidation of Methane to Syngas over Calcined Ni–Mg/Al Layered Double Hydroxides.”, Catal. Lett., 83, 65(2002).
    [51] O.W. Perez-Lopez, A. Senger, N.R. Marcilio, M.A. Lansarin, “Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane.”, Appl. Catal. A Gen., 303, 234(2006).
    [52] A.I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, T. Hayakawa, “Dry reforming of methane over catalysts derived from nickel-containing Mg–Al layered double hydroxides.”, J. Catal., 213, 191(2003).
    [53] A.I. Tsyganok, K. Suzuki, S. Hamakawa, K. Takehira, T. Hayakawa, “Mg–Al Layered Double Hydroxide Intercalated with [Ni(edta)]2− Chelate as a Precursor for an Efficient Catalyst of Methane Reforming with Carbon
    Dioxide.”, Catal. Lett., 77, 75(2001).
    [54] G. Kim, “Ceria-promoted three-way catalysts for auto exhaust emission control.”, Ind. Eng. Chem. Prod. Res. Dev., 21, 267(1982).
    [55] A. Trovarelli, G. Dolcetti, F. Zamar, J. Llorca, C.de Leitenburg, J.T. Kiss, “Nanophase Fluorite-Structured CeO2–ZrO2Catalysts Prepared by High-Energy Mechanical Milling.”, J. Catal., 169, 490(1997).
    [56] P. Fornasiero, R. Dimonte, G.R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties.”, J. Catal., 151, 168(1995).
    [57] D.J. Kim, “Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions.”, J. Am. Ceram. Soc., 72, 1415(1989).
    [58] G. Vlaic, P. Fornasiero, J. Kaspar, M. Graziani, S. Geremia, “Relationship between the Zirconia-Promoted Reduction in the Rh-Loaded Ce0.5Zr0.5O2 Mixed Oxide and the Zr–O Local Structure.”, J. Catal., 168, 386(1997).
    [59] P. Fornasiero, R. Dimonte, E. Fonda, J. Kaspar, G. Vlaic, M. Graziani, “Relationships between Structural/Textural Properties and Redox Behavior in Ce0.6Zr0.4O2 Mixed Oxides.”, J. Catal., 187, 177(1999).
    [60] P. Fornasiero, G. Balducci, R. Dimonte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, “Modification of the Redox Behaviour of CeO2Induced by Structural Doping with ZrO2.”, J. Catal., 164, 173(1996).
    [61] C.E. Hori, H. Permana, K.Y.S. Ng, A. Brenner, K. More, K.M. Rahmoeller, D. Belton, “Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system.”, Appl. Catal. B Environ., 16, 105(1998).
    [62] C. de Leitenburg, A. Trovarelli, J. Llorca, F. Cavani, G. Bini, “The effect of doping CeO2 with zirconium in the oxidation of isobutene.”, Appl. Catal. A
    Gen., 139, 161(1996).
    [63] H.J.M. Bosman, E.C. Kruissink, J. Vanderspoel, F. Vandenbrink, “Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides.”, J. Catal., 148, 660(1994).
    [64] K. Otsuka, Y. Wang, E. Sunada, I. Yamanaka, “Reaction and Surface Characterization Study of Higher Alcohol Synthesis Catalysts: VII. Cs- and Pd-Promoted 1:1 Zn/Cr Spinel.”, J. Catal., 175, 152(1998).
    [65] W.S. Dong, K.W. Jun, H.S. Roh, Z.W. Liu, S.E. Park, “Comparative Study on Partial Oxidation of Methane over Ni/ZrO2, Ni/CeO2 and Ni/CeZrO2 Catalysts.”, Catal. Lett., 78, 215(2002).
    [66] K. Otsuka, Y. Wang, M. Nakamura, “Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature.”, Appl. Catal. A Gen., 183, 317(1999).
    [67] S. Pengpanich, V. Meeyoo, T. Rirksomboon, K. Bunyakiat, “Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis.”, Appl. Catal. A Gen., 234, 221(2002).
    [68] S. Pengpanich, V. Meeyoo, T. Rirksomboon, “Methane partial oxidation over Ni/CeO2–ZrO2 mixed oxide solid solution catalysts.”, Catal. Today, 93-95, 95(2004).
    [69] P. Pantu, K. Kim, G.R. Gavalas, “Methane partial oxidation on Pt/CeO2–ZrO2 in the absence of gaseous oxygen.”, Appl. Catal. A Gen., 193, 203(2000).
    [70] M. Fathi, E. Bjorgum, T. Viig, O.A. Rokstad, “Partial oxidation of methane to synthesis gas: Elimination of gas phase oxygen.”, Catal. Today, 63, 489(2000).
    [71] T. Zhu, M. Flytzani-Stephanopoulos, “Catalytic partial oxidation of methane to synthesis gas over Ni–CeO2.”, Appl. Catal. A Gen., 208, 403(2001).
    [72] S. Shen, C. Li, C. Yu, “Mechanistic study of partial oxidation of methane to syngas over a Ni/Al2O3 catalyst.”, Stud. Surf. Sci.Catal., 119, 765(1998).
    [73] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, “Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane.”, Catal. Lett., 74, 31(2001).
    [74] T. Takeguchi, S. Furukawa, M. Inoue, “Hydrogen Spillover from NiO to the Large Surface Area CeO2–ZrO2 Solid Solutions and Activity of the NiO/CeO2–ZrO2 Catalysts for Partial Oxidation of Methane.”, J. Catal., 202, 14(2001)
    [75] S.C. Reyes, J.H. Sinfelt, J.S. Feeley, “Evolution of Processes for Synthesis Gas Production: Recent Developments in an Old Technology.”, Ind. Eng. Chem. Res., 42, 1588(2003).
    [76] S. Rabe, T.B. Truong, F. Vogel, “Catalytic autothermal reforming of methane and propane over supported metal catalysts.”, Appl. Catal. A Gen., 292, 177(2005).
    [77] S. Ahmed, M. Krumpelt, “Hydrogen fromhydrocarbon fuels for fuel cells.”, Int. J. Hydrogen Energy, 26, 291(2001).
    [78] S. Rabe, T.B. Truong, F. Vogel, “Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant.”, Appl. Catal. A Gen., 318, 54(2007).
    [79] V.R. Choudhary, K.C. Mondal, T.V. Choudhary, “Oxy-CO2 Reforming of Methane to Syngas over CoOx/MgO/SA-5205 Catalyst.”, Fuel, 85, 2484(2006).
    [80] R. Horn, K.A. Williams, N.J. Degenstein, A. Bitsch-Larsen, D.D. Nogare, S.A. Tupy, L.D. Schmidt, “Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium.”, J. Catal., 249, 380(2007).
    [81] H.M. Wang, “Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst.”, J. Power Sources, 177, 506(2008).
    [82] S.H. Chan, H.M. Wang, “Thermodynamic analysis of natural-gas fuel processing for fuel cell applications.”, Int. J. Hydrogen Energy, 25, 441(2000).
    [83] K. Tomishige, S. Kanazawa, K. Suzuki, M. Asadullah, M. Sato, K. Ikushima, K. Kunimori, “Effective heat supply from combustion to reforming in methane reforming with CO2 and O2: comparison between Ni and Pt catalysts.”, Appl. Catal. A Gen., 233, 35(2002).
    [84] B.T. Li, R. Watanabe, K. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige, “High combustion activity of methane induced by reforming gas over Ni/Al2O3 catalysts.”, Appl. Catal. A Gen., 290, 36(2005).
    [85] S. Cimino, G. Landi, L. Lisi, G. Russo, “Development of a dual functional structured catalyst for partial oxidation of methane to syngas.”, Catal. Today, 105, 718(2005).
    [86] L. Ma, D.L. Trimm, “Alternative catalyst bed configurations for the autothermic conversion of methane to hydrogen.”, Appl. Catal. A Gen.,138, 265(1996).
    [87] 陳裕昌, “以改良之Ni-Mg-Al 類水滑石型觸媒催化二氧化碳的甲烷氧化重組反應”, 國立成功大學化學工程學系碩士論文(2008).
    [88] 孫逸民, 陳玉舜, 趙敏勳, 謝明學, 劉興鑑, “儀器分析”, 全威圖書(2004).
    [89] S. Damyanova, L. Daza, J.L.G. Fierro, “Surface and Catalytic Properties of Lanthanum-Promoted Ni/Sepiolite Catalysts for Styrene Hydrogenation.”, J. Catal., 159, 150(1996).
    [90] S. Tang, J. Lin, K.L. Tan, “Partial Oxidation of Methane to Syngas over Ni/MgO, Ni/CaO and Ni/CeO2.”, Catal. Lett., 51, 169(1998).
    [91] 陳長仁, “含Ni 觸媒用於催化二氧化碳甲烷重組反應之比較研究”, 國立成功大學化學工程學系碩士論文(2007).
    [92] MALT2, The Japan Society of Calorimetry and Thermodynamic Analysis, Tokyo(1993).
    [93] Lj. Kundakovic, M. Flytzani-Stephanopoulos, “Cu- and Ag- Modified Cerium Oxide Catalysts for Methane Oxidation.”, J. Catal., 179, 203(1998).
    [94] O.V. Krylov, A. Kh. Mamedov, S.R. Mirzabekova, “Interaction of carbon dioxide with methane on oxide catalysts.”, Catal. Today, 42, 211(1998).
    [95] S.M. Stagg-Williams, F.B. Noronha, G. Fendley, D.E. Resasco, “CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce oxides.”, J. Catal., 194, 240(2000).
    [96] L.H. Wang, S.X. Zhang, Y. Liu, “Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts.”, J. Rare Earths, 26, 66(2008).

    下載圖示 校內:2010-07-14公開
    校外:2011-07-14公開
    QR CODE