簡易檢索 / 詳目顯示

研究生: 陳炫名
Chen, Hsuan-Ming
論文名稱: 並四苯:富勒烯二極體元件之磁電導響應
Magneto Conductance Responses of Tetracene:C60-based Diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 磁電導並四苯富勒烯單重激發態分子的裂變機制
外文關鍵詞: Magneto-conductance, tetracene, C60, singlet fission.
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究有機並四苯摻雜富勒烯C60的磁電導效應。而磁電導效應與激發態濃度有相對關係,因此藉由摻混富勒烯C60來分析激發態濃度對於磁電導效應的影響。首先觀察到在具有強烈單重激發態分子裂變機制的並四苯材料中,此機制會受到磁場所影響並反應至磁電導效應中。隨著富勒烯C60的加入,發現到磁電導效應的趨勢會完全改變。從實驗中得到,改變摻混富勒烯C60的濃度可驗證出富勒烯C60本身的磁電導效應會與之競爭,而影響原裂變機制所貢獻的磁電導。另外,光電流的生成可影響自由載子數量,此時三重態激發子有機會與載子反應(Triplet charge reaction)而貢獻出負磁電導效應。以上為富勒烯C60摻雜對並四苯磁電導效應的影響。

    The purpose of this study is to identify magneto-conductance (MC) under illumination in tetracene blend fullerene C60 organic diodes. Due to the closely correlation between MC and the concentration of the excited states, we control the concentration of excited state by blending C60 into tetracene. First, we found strong singlet fission in tetracene, which could be affected by the magnetic field and results in magneto-conductance. However, we detected the characteristic of MC will be varied from adding the C60. With increasing the concentration of the C60, the positive MC of C60 will appear and eventually replace the MC of single fission. In addition, the negative MC were obtained if the devices had numerous free carriers will react with triplet excitons. Then the triplet charge reaction will decreased with applied magnetic field contributing to a negative MC component. Our results demonstrate these influence by doping C60 will compete with the magneto-conductance related to singlet fission.

    摘要 I Abstract II 致謝 VII 目錄 IX 圖目錄 XIII 表目錄 XIX 第一章 研究領域與實驗動機 1 1-0 前言-有機半導體簡介 1 1-1 有機半導體磁場效應 3 1-2 實驗研究動機 16 1-3 大綱 17 第二章 有機磁效應理論機制討論 18 2-1 氫原子模型自旋相依量子效應 18 2-1-a 自旋軌道耦合作用 (Spin-orbital coupling) 19 2-1-b 超精細結構 (Hyperfine interaction) 20 2-1-c 黎曼效應 (Zeeman effect) 22 2-1-d 交換偶合作用力 (Exchange interaction) 23 2-2 激發態磁場效應 26 2-2-a 有機材料的分子內與分子間激發態 27 2-2-b 系統間轉移(Intersystem crossing) 29 2-2-c 三重態激發子與載子交互作用(Triplet-charge reaction) 31 2-2-d 三重態激發子的融合(Triplet fusion) 32 2-2-e 單重態激發子的裂變(Singlet fission) 33 2-4 結論 36 第三章 實驗製作流程與量測分析方法 37 3-0 有機半導體元件製程 37 3-1 ITO導電玻璃基板的製備 39 3-1-a 基板切割 39 3-1-b 基板清洗 39 3-1-c 黃光顯影(Photolithography) 40 3-2 有機半導體元件的製備要點 44 3-2-a 基板的清洗 44 3-2-b 陽極 PEDOT:PSS的製程 44 3-2-c 主動層Tetracene、C60與陰極BCP的製程 45 3-3 有機半導體元件的量測與分析 49 3-3-a 有機元件的封裝 49 3-3-b 磁效應量測儀器的架設 50 3-3-c 元件電性與磁性的量測與分析與訊號處理 52 3-3-d 光致發光(photoluminescence, PL)光譜儀 55 3-4 結論 56 第四章 有機並四苯與富勒烯之磁電導效應 57 4-0 前言 57 4-1 Tetracene元件之磁電導效應 59 4-1-a 元件的電場量測特性 59 4-1-b 元件的磁場量測特性 60 4-1-c 討論Pentacene之極化子對模型(Polaron pair model) 62 4-1-d 探討改變外加電壓對Tetracene磁電導之影響 64 4-1-e 光致發光磁效應於Tetracene元件 69 4-1-f 結論 72 4-2摻雜C60於Tetracene之磁電導效應 74 4-2-a 雙層元件(Double layers)於光電流下之磁電導效應 74 4-2-b Charge transfer complex對光電流磁電導的物理機制 77 4-2-c 混層元件(Bulk structure)於不同外加偏壓下之磁電導效應 80 4-2-d 改變不同摻雜比例的磁電導效應 82 4-2-e 分析元件的光電流大小 88 4-2-f 驗證負磁效應的生成 90 4-2-g 結論 93 第五章 結論與未來展望 95 5-1 結論 95 5-2 未來展望 97 參考資料 100  

    [1]C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene,” Phys. Rev. Lett. 39, 1098 (1977).
    [2]C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987).
    [3]L. S. Huang, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett. 70, 152 (1997).
    [4]H. Hoppe, and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells,” J. Mater. Chem. 16, 45 (2006).
    [5]M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20, 2116 (2008).
    [6]D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors,” Adv. Mater. 21, 1473 (2009).
    [7]J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials,” Adv. Mater. 19, 1791 (2007).
    [8]V. Ern, and R. E. Merrifield, “Magnetic field effect on triplet exciton quenching in organic crystals,” Phys. Rev. Lett. 21, 609 (1968).
    [9]R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of singlet excitons into pairs of triplet excitons in tetracene crystals,” Chem. Phys. Lett. 3, 155 (1969).
    [10]M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
    [11]U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89, 51 (1989).
    [12]E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes),” Phys. Rev. B 46, 9320 (1992).
    [13]E. L. Frankevich, “On mechanisms of population of spin substates of polaron pairs,” Chem. Phys. 297, 315 (2004).
    [14]V. Dyakonov, and E. L. Frankevich, “On the role played by polaron pairs in photophysical processes in semiconducting polymers,” Chem. Phys. 227, 203 (1998).
    [15]J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
    [16]Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
    [17]B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nat. Mater. 6, 985 (2007).
    [18]Z. H. Xu, and B. Hu, “Photovoltaic processes of singlet and triplet excited states in organic solar cells,” Adv. Funct. Mater. 18, 1 (2008).
    [19]B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
    [20]M. Wohlgenannt, and Z. V. Vardeny, “Spin-dependent exction formation rates in π–conjugated materials,” J. Phys. Condens. Matter 15, R83 (2003).
    [21]I. V. Tolstov, A. V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M. Triebel, and E. L. Frankevich, “On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS,” J. Lumin. 112, 368 (2005).
    [22]N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline),” Phys. Rev. B 80, 241201R (2009).
    [23]P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M.Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007).
    [24]Q. Peng, W. Li, S. Zhang, P. Chen, Feng Li, and Y. Ma, “Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements,” Adv. Opt. Mater. 1, 362 (2013).
    [25]H. Bouchriha, V. Ern, J. L. Fave, C. Guthmann, M. Schott, “Magnetic field dependence of singlet exciton fission and fluorescence in crystalline tetracene at 300 K,” J. Phys. France 39, 257 (1978).
    [26]H. Liu, W. Y. Jia, Y. Zhang, Q. M. Zhang, Y. L. Lei, C. L. Lu, Y. Z. Ling, Z. H. Xiong, “Tuning magneto-electroluminescence in oranic light emitting diodes by controlling the competition between singlet fission and triplet fusion,” Synth. Met. 198, 6 (2014).
    [27]W. Holzer, A. Penzkofer, and T. Tsuboi, “Absorption and emission spectroscopic characterization of Ir(ppy)3,” Chem. Phys. 308, 93 (2005).
    [28]A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
    [29]A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers,” Adv. Funct. Mater. 14, 11 (2004).
    [30]A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers,” Phys. Rev. Lett. 93, 066803 (2004).
    [31]M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68, 075211 (2003).
    [32]A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Mater. 14, 701 (2002).
    [33]W. Y. Wong, and C. L. Ho, “Heavy metal organometallic electrophosphors derived from multi-component chromophores,” Chem. Rev. 253, 1709 (2009).
    [34]W. Helfrich, “Destruction of triplet excitons in anthracene by injected electrons,” Phys. Rev. Lett. 16, 401 (1966).
    [35]M. Wittmer, and I. Zschokke-Gränacher, “Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene,” J. Chem. Phys. 63, 4187 (1975).
    [36]J. Levinson, S. Z. Weisz, A. Cobas, and A. Rolón, “Determination of the triplet exciton-trapped electron interaction rate constant in anthracene crystals,” J. Chem. Phys. 52, 2794 (1970).
    [37]C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time,” Chem. Phys. Lett. 340, 232 (2001).
    [38]R. C. Johnson, and R. E. Merrifield, “Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals,” Phys. Rev. B. 1, 815 (1970).
    [39]Q. M. Zhang, Y. L. Lei, Q. L. Song, P. Chen, Y. Zhang, and Z. H. Xiong, “Positive and negative components of magnetoconductance in hole transport limited organic light-emitting diodes,” Appl. Phys. Let. 98, 243303 (2011).
    [40]Q. Peng, A. Li, Y. Fan, P. Chen, and F. Li, “Studying the influence of triplet deactivation on the singlet-triplet inter-conversion in intra-molecular charge-transfer fluorescence-based oled by magneto-electroluminescence,” J. Mater. Chem. C 2, 6264 (2014).
    [41]X. M. Wen, P. Yu, C. T. Yuan, X. Q. Ma, and J. Tang, “Singlet and triplet carrier dynamics in rubrene single crystal,” J. Phys. Chem. C 117, 17741 (2013).
    [42]F. Millicent, B. Smith, and J. Michl, “Singlet fission,” Chem. Rev. 110, 6891 (2010).
    [43]Y. F Zhang, and S. R. Forrest, “Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes,” Phys. Rev. Lett. 108, 267404 (2012).
    [44]G. B. Piland, J. J. Burdett, D. Kurunthu, and C. J. Bardeen, “Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene,” J. Phys. Chem. C 117, 1224 (2013).
    [45]R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet excitons,” J. Chem. Phys. 48, 4318 (1968).
    [46]E. C. Greyson, B. R. Stepp, X. D. Chen, A. F. Schwerin, I. Paci, M. B. Smith, A. Akdag, J. C. Johnson, A. J. Nozik, J. Michl, and M. A. Ratner, “Singlet exciton fission for solar cell applications:energy aspects of interchromophore coupling,” J. Phys. Chem. B 114, 14223 (2010).
    [47]J. W. Bai, P. Chen, Y. L. Lei, Y. Zhang, Q. M. Zhang, Z. H. Xiong, and F. Li, “Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlet–triplet energy-resonant organic light-emitting diodes,” Org. Electron 14 169 (2014).
    [48]C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions,” Appl. Phys. Lett. 86, 243506 (2005).
    [49]W. S. Huang, Z. R. Xu, B. Hu, T. F. Guo, J. C. A. Huang, and T. C. Wen “Magnetoconductance responses of triplet polaron pair charge reaction In hyperfine coupling regime” Appl. Phys. Lett. 103, 253304 (2013).
    [50]W. S. Huang, Z. R. Xu, K. C. Chen, T. F. Guo, J. C. A. Huang, and T. C. Wen “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes” Org. Electron. 15, 3076 (2014).

    無法下載圖示 校內:2021-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE