簡易檢索 / 詳目顯示

研究生: 張乃文
Jhang, Nai-Wun
論文名稱: 失眠者白噪音之機器學習推薦系統設計與評估
Applying Machine Learning to Design and Evaluate the White Noise Recommendation System for Insomniacs
指導教授: 洪郁修
Hung, Yu-Hsiu
林彥呈
Lin, Yang-Cheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 推薦系統機器學習白噪音睡眠使用性
外文關鍵詞: Recommendation System, Machine Learning, White Noise, Sleep, Usability
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現代人生活型態改變,因而出現許多睡眠問題。失眠問題尤其嚴重,失眠症除了會出現難以入睡、睡不著、太早醒來等困擾,如處理不當更會造成憂鬱、肥胖和心血管疾病等風險增加。現今的治療多半還是採用藥物治療,使得病患出現藥物濫用、副作用等狀況,而在非藥物治療方面,聲音對於睡眠的研究或是治療已有一定的研究基礎,但由於聲音相當主觀的感受,怎麼樣的聲音才是適合怎樣人的睡眠始終無法得知,因而無法有效應用於失眠症上。現今人工智慧多元發展,較少透過實際的產品或服務針對失眠者進行實驗。另外隨著手機的應用相當廣泛,對於使用者的感受也需多加探討。
    因此基於上述,本研究設計一款白噪音音樂串流推薦系統應用程式,並採用基於基於項目的協同過濾,推薦合適的白噪音給失眠患者,用以改善失眠者的睡眠品質。最終我們成功建置出該套系統原型,並對16位輕度失眠患者運用隨機對照法,進行五天的睡眠評估實驗,驗證該系統的有效性。使用無母數進行統計實驗組與對照組的深度睡眠平均分別為25.4%和21.7%,而快速動眼期的平均則為27.4%和23.4%,能有助於提升失眠者穩定的深層睡眠與快速動眼期。同時我們也藉由SUS系統使用性量表和半結構式訪談,對8位失眠者進行使用性評估,了解該系統之使用性與意願度,結果顯示該系統使用性評分為85分,屬於使用性良好狀態。最終研究結果表明,所提出的機器學習推薦白噪音方案,能夠幫助失眠患者在良好的使用體驗中,找到合適的白噪音,並且有助於改善他們的睡眠品質。
    本研究的宗旨在於設計能夠改善失眠患者的白噪音推薦系統,協助改善失眠問題,最終本研究所帶來的成果,在未來可提供給日後聲音與睡眠、人機互動、機器學習等相關研究參考之用。

    Many sleep problems have occurred due to changes in the modern lifestyle. Insomnia is relatively more serious than other sleep disorders. An insomnia not handled properly will increase the risk of depression, obesity, and cardiovascular diseases. Nowadays, most sleep therapies involve treatment with drugs, which cause side effects on some patients. For non-drug therapies, sound is used to assist sleep, and its research has a solid foundation. However, sound is quite subjective, and it is difficult to determine the sound suitable for each individual. Therefore, it cannot be effectively applied to insomnia. With the diversified development of artificial intelligence, experiments with insomnia are rarely conducted through actual products or services. Besides, as mobile phones' application is quite extensive, more discussion is needed for user experience.

    Therefore, based on the above, this research designs a white noise streaming recommendation system application. It uses project-based collaborative filtering to recommend appropriate white noise to patients with insomnia to improve their sleep quality. In the end, we successfully built the system prototype. Then we used a randomized controlled method for 16 patients with mild insomnia to conduct a five-day sleep assessment experiment. It is used to verify the effectiveness of the system. We use nonparametric tests for statistics. The experimental group's average deep sleep and the control group were 25.4% and 21.7%, respectively, while the average of the REM period was 27.4% and 23.4%. This result indicates that it can help improve the stable deep sleep and REM period of insomniacs. At the same time, we also used System Usability Scale (SUS) and semi-structured interviews to evaluate the usability of 8 people with insomnia. In order to understand the usability and willingness of the system. This result shows that the system's usability score is 85, which means a good usability state. The final research results show that our proposed machine learning recommended white noise solution can help patients with insomnia find suitable white noise in a good experience. And this program can help improve their sleep quality.

    This research aims to design a white noise recommendation system that can improve insomnia patients and help improve insomnia problems. Finally, this research can reference for related research in the future, such as sound and sleep, human-computer interaction, and machine learning.

    摘要 ii SUMMARY iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.1.1 Insomnia and Insomniac Population 1 1.1.2 Sleep Monitoring and Sleep Assessment 4 1.1.3 White Noise and Sleep Treatment 6 1.1.4 Machine Learning and Music Recommendation 7 1.2 Motivation 7 1.3 Purposes 9 1.4 Research Framework 11 CHAPTER 2 LITERATURE REVIEW 14 2.1 Sleep and Insomnia 14 2.1.1 Sleep Quality and Sleep Cycle 14 2.1.2 Insomnia 16 2.1.3 Evaluation and Measurement of Insomnia 17 2.1.4 Treatment of Insomnia 21 2.2 Music Improves Sleep 22 2.3 Artificial Intelligence 24 2.3.1 Machine Learning 24 2.3.2 Deep Learning 26 2.4 Usability 29 2.4.1 Usability Design 29 2.4.2 Usability Evaluation 31 CHAPTER 3 METHODOLOGY 34 3.1 Software Development and Design 34 3.1.1 Application Development 34 3.1.2 User Interface Design 36 3.2 Machine Learning Model Building 40 3.2.1 Music Data Collection 40 3.2.2 Sleep Data Collection 42 3.2.3 Content Recommendation Model Building 42 3.3 Experiment 44 3.3.1 Experiment Process 45 3.3.2 Sleep Assessment Experiment 45 3.3.3 Usability Evaluation Experiment 49 CHAPTER 4 RESULTS 51 4.1 Collaborative Filtering Model 51 4.1.1 Data Processing and Input 51 4.1.2 Collaborative Filtering Recommendation Model Operation 52 4.2 Sleep Assessment Test 55 4.2.1 Subject 55 4.2.2 Experiment Procedure 57 4.2.3 Experimental Results 58 4.3 Usability Test 61 4.3.1 System Usability Scale 62 4.3.2 Semi-structured Interview 63 CHAPTER 5 DISCUSSION 67 5.1 Discussion of Sleep Assessment 67 5.2 Discussion of Usability Evaluation 69 5.3 Software Development and Design Discussion 70 5.3.1 Discussion of Software Development 70 5.3.2 Discussion of Machine Learning Models 71 CHAPTER 6 CONCLUSION 72 6.1 Conclusions and Contributions of this Study 72 6.2 Future Development 73 REFERENCES 75 Appendix A PSQI 81 Appendix B SUS 83 Appendix C IRB LICENSE 84 Appendix D INFORMED CONSENT 85 Appendix E CONSULTATION FORM 88

    李宇宙. (2005). 失眠症的臨床評估與處置. 台灣醫學, 9(3), 346-353. [Y. J. Lee, " The Clinical Evaluation and Management of Insomnia," Formosan Journal of Medicine, vol. 9, no. 3, pp. 346-353, 2005.]
    楊建銘. (2000). 失眠的行為及心理治療. 台灣醫學, 4(6), 694-703. [C. M. Yang, " Psychological and Behavioral Treatment of Insomnia," Formosan Journal of Medicine, vol. 4, no. 6, pp. 694-703, 2000.]
    Afshar, P. F., Bahramnezhad, F., Asgari, P., & Shiri, M. (2016). Effect of white noise on sleep in patients admitted to a coronary care. Journal of caring sciences, 5(2), 103.
    Arnedt, J. T., Conroy, D. A., Posner, D. A., & Aloia, M. S. (2006). Evaluation of the insomnia patient. Sleep Medicine Clinics, 1(3), 319-332.
    Attarha, M., Bigelow, J., & Merzenich, M. M. (2018). Unintended Consequences of White Noise Therapy for Tinnitus—Otolaryngology's Cobra Effect: A Review. JAMA Otolaryngology–Head & Neck Surgery, 144(10), 938-943.
    Backhaus, J., Junghanns, K., Broocks, A., Riemann, D., & Hohagen, F. (2002). Test–retest reliability and validity of the Pittsburgh Sleep Quality Index in primary insomnia. Journal of psychosomatic research, 53(3), 737-740.
    Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
    Barker, M. J., Greenwood, K. M., Jackson, M., & Crowe, S. F. (2004). Cognitive effects of long-term benzodiazepine use. CNS drugs, 18(1), 37-48.
    Bastien, C. H., Vallières, A., & Morin, C. M. (2001). Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297-307.
    Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.
    Billiard, M., & Bentley, A. (2004). Is insomnia best categorized as a symptom or a disease? Sleep Medicine, 5, S35-S40.
    Buysse, D. J., Germain, A., Hall, M. L., Moul, D. E., Nofzinger, E. A., Begley, A., . . . Kupfer, D. J. (2008). EEG spectral analysis in primary insomnia: NREM period effects and sex differences. Sleep, 31(12), 1673-1682.
    Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research, 28(2), 193-213.
    Chang, E.-T., Lai, H.-L., Chen, P.-W., Hsieh, Y.-M., & Lee, L.-H. (2012). The effects of music on the sleep quality of adults with chronic insomnia using evidence from polysomnographic and self-reported analysis: a randomized control trial. International journal of nursing studies, 49(8), 921-930.
    Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498-502.
    Chen, C.-K., Pei, Y.-C., Chen, N.-H., Huang, L.-T., Chou, S.-W., Wu, K. P., . . . Wu, C.-K. (2014). Sedative music facilitates deep sleep in young adults. The Journal of Alternative and Complementary Medicine, 20(4), 312-317.
    Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. Paper presented at the Proceedings of the 10th ACM conference on recommender systems.
    Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M., Tibollo, V., . . . Bellazzi, R. (2018). Machine learning methods to predict diabetes complications. Journal of diabetes science and technology, 12(2), 295-302.
    Fagherazzi, G., El Fatouhi, D., Bellicha, A., El Gareh, A., Affret, A., Dow, C., . . . Oppert, J.-M. (2017). An international study on the determinants of poor sleep amongst 15,000 users of connected devices. Journal of medical Internet research, 19(10), e363.
    Feinberg, I. (1974). Changes in sleep cycle patterns with age. Journal of psychiatric research, 10(3-4), 283-306.
    Flink, H.-M., Oksanen, J., Pyysalo, U., Rönneberg, M., & Sarjakoski, L. T. (2011). Usability evaluation of a map-based multi-publishing service. In Advances in Cartography and GIScience. Volume 1 (pp. 239-257): Springer.
    Forquer, L., & Johnson, C. M. (2007). Continuous white noise to reduce sleep latency and night wakings in college students. Sleep and Hypnosis, 9(2), 60.
    Gislason, T., Reynisdottir, H., Kristbjarnarson, H., & Benediktsdottir, B. (1993). Sleep habits and sleep disturbances among the elderly—an epidemiological survey. Journal of internal medicine, 234(1), 31-39.
    Goodwin, N. C. (1987). Functionality and usability. Communications of the ACM, 30(3), 229-234.
    Harrison, R., Flood, D., & Duce, D. (2013). Usability of mobile applications: literature review and rationale for a new usability model. Journal of Interaction Science, 1(1), 1.
    Hayter, J. (1983). Sleep behaviors of older persons. Nursing Research, 32(4), 242-246.
    Hochreiter, S., & Schmidhuber, J. (1997). LSTM can solve hard long time lag problems. Paper presented at the Advances in neural information processing systems.
    Innes, K. E., Selfe, T. K., Khalsa, D. S., & Kandati, S. (2016). Effects of meditation versus music listening on perceived stress, mood, sleep, and quality of life in adults with early memory loss: a pilot randomized controlled trial. Journal of Alzheimer's Disease, 52(4), 1277-1298.
    Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of pathology informatics, 7.
    Jean-Louis, G., Kripke, D. F., Cole, R. J., Assmus, J. D., & Langer, R. D. (2001). Sleep detection with an accelerometer actigraph: comparisons with polysomnography. Physiology & behavior, 72(1-2), 21-28.
    Lai, H. L., & Good, M. (2005). Music improves sleep quality in older adults. Journal of advanced nursing, 49(3), 234-244.
    Laugsand, L. E., Strand, L. B., Platou, C., Vatten, L. J., & Janszky, I. (2013). Insomnia and the risk of incident heart failure: a population study. European heart journal, 35(21), 1382-1393.
    Littner, M., Hirshkowitz, M., Kramer, M., Kapen, S., Anderson, W. M., Bailey, D., . . . Kushida, C. (2003). Practice parameters for using polysomnography to evaluate insomnia: an update. Sleep, 26(6), 754-760.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in plant science, 7, 1419.
    Morin, C. M., & Benca, R. (2012). Chronic insomnia. The Lancet, 379(9821), 1129-1141.
    Morin, C. M., Bootzin, R. R., Buysse, D. J., Edinger, J. D., Espie, C. A., & Lichstein, K. L. (2006). Psychological and behavioral treatment of insomnia: update of the recent evidence (1998–2004). Sleep, 29(11), 1398-1414.
    Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. Jama, 309(13), 1351-1352.
    Nielsen, J. (1996). Usability metrics: Tracking interface improvements. Ieee Software, 13(6), 1-2.
    Nielsen, J. (2005). Ten usability heuristics. In: https://www.nngroup.com/articles/ten-usability-heuristics/.
    Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Www, 1, 285-295.
    Sauro, J. (2011). Sustisfied? little-known system usability scale facts. UX Magazine, 10(3), 2011-2013.
    Shahin, M., Ahmed, B., Hamida, S. T.-B., Mulaffer, F. L., Glos, M., & Penzel, T. (2017). Deep learning and insomnia: assisting clinicians with their diagnosis. IEEE journal of biomedical and health informatics, 21(6), 1546-1553.
    Tullis, T. S., & Stetson, J. N. (2004). A comparison of questionnaires for assessing website usability. Paper presented at the Usability professional association conference.
    Van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. Paper presented at the Advances in neural information processing systems.
    Wang, I.-D., Liu, Y.-L., Peng, C.-K., Chung, C.-H., Chang, S.-Y., Tsao, C.-H., & Chien PhD, W.-C. (2017). Non-apnea sleep disorder increases the risk of subsequent female infertility—a nationwide population-based cohort study. Sleep, 41(1), zsx186.
    Wang, X., & Wang, Y. (2014). Improving content-based and hybrid music recommendation using deep learning. Paper presented at the Proceedings of the 22nd ACM international conference on Multimedia.
    Xu, J., Yu, L., Cai, R., Zhang, J., & Sun, X. (2010). Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex. Cerebral Cortex, 20(4), 804-812.
    Yang, C., Hsu, S., Lin, S., Chou, Y., & Chen, Y. (2009). Reliability and validity of the Chinese version of insomnia severity index. Arch Clin Psychol, 4(2), 95-104.
    Yang, R.-Y., Bendjoudi, A., Buard, N., & Boutouyrie, P. (2019). Pneumatic sensor for cardiorespiratory monitoring during sleep. Biomedical Physics & Engineering Express, 5(5), 055014.
    Yu-Syuan, G. (2018). A Health Management APP Interface Design and Usability Evaluation for Older Adult. National Taipei University of Technology, Taipei Tech, Taipei. Retrieved from https://hdl.handle.net/11296/ngya4e
    Zhang, X., Kou, W., Eric, I., Chang, C., Gao, H., Fan, Y., & Xu, Y. (2018). Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device. Computers in biology and medicine, 103, 71-81.

    無法下載圖示 校內:2026-02-01公開
    校外:2026-02-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE