簡易檢索 / 詳目顯示

研究生: 吳家鴻
Wu, Cha-hom
論文名稱: 六軸奈米測量機平台之研製
Development of the Six-Axes Nanomeasuring Machine Stage
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 124
中文關鍵詞: XY雙軸滑軌平台音圈馬達四軸壓電補償平台壓電致動器奈米測量機平台六自由度
外文關鍵詞: piezoelectric actuator, six-degrees-of freedom, nanomeasuring machine, voice coil motor, X-Y stage, PZT stage
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為開發一六軸奈米測量機平台,主要在平台之設計分析、製造、組裝,並整合六自由度誤差量測系統進行平台回授控制。此平台包含兩個部份,第一個部份為利用壓電致動器推動之四軸壓電補償平台,第二個部分為利用音圈馬達來推動V型導軌架構而成之XY雙軸滑軌平台。由於利用音圈馬達推動之中長行程平台其定位精度經由控制也很能突破至奈米級,因此使用壓電補償平台來補償XY雙軸滑軌平台移動時所形成的誤差(Z軸方向誤差、Pitch 、Roll和Yaw),使整個平台系統的定位精度提高,而本四軸壓電微動平台有Z、θx、θy、θz等四自由度之運動。位置回饋訊號為設計一六自由度的雷射量測系統包含三組干涉儀與一個角度量測系統將平台移動時六個自由度誤差回饋進行控制。將建構平台設計要求三軸定位精度達10nm,此平台最終目的將可提供量測次微米級結構達到奈米級精度。

    This paper concentrates on the design, analysis, manufacturing process and assembly of a six-axes nanomeasuring machine stage and combines a six degrees-of-freedom error measuring system for feedback control on nanomeasuring machine stage. This stage includes two parts: 1) a four-axes PZT stage utilizing piezoelectric actuator;2) A ball guided X-Y stage utilizing two voice coil motor. The ball guided X-Y stage utilizing two voice coil motor to servo the moving stage can’t achieve nanometer-scale accuracy. Thus, the PZT stage is designed to compensate the vertical straightness, pitch, roll and yaw errors throughout its range of travel. This stage have four degrees-of-freedom movements(Z、θx、θy、θz). Precision feedback is provided by the six degrees-of-freedom measuring system with integrating the three plane mirror interferometers and a two-axes angular sensor. The stage is designed to achieve a positioning accuracy of 10 nm. The ultimate purpose of this measuring machine is to provide a means of measuring submicron-scale feature with nanometer-scale accuracy.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 目 錄 VII 表 目 錄 XV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 第2章 研究目標 6 第3章 六軸奈米測量機平台之設計與分析 8 3.1 奈米測量機平台架構說明 8 3.1.1 四軸壓電補償平台之架構說明 10 3.1.2 四軸壓電補償平台之作動原理說明 15 3.2 XY雙軸滑軌平台架構說明 18 3.2.1 XY雙軸滑軌平台安裝說明 20 3.3 奈米測量機量測架構說明 27 3.4 四軸壓電補償平台之結構應力分析 33 3.4.1 二自由度撓性體之結構分析 34 3.4.2 壓電補償平台θz作動之結構分析 40 3.4.3 壓電補償平台θx作動之結構分析 44 3.4.4 壓電補償平台θy作動之結構分析 49 3.4.5 壓電補償平台自重之結構分析 52 第4章 壓電遲滯建模與遲滯補償 57 4.1 遲滯數學模型之理論及建立 58 4.1.1 遲滯數學模型之理論 58 4.1.2 遲滯參數建立方法 61 4.1.3 遲滯參數結果 64 4.2 壓電致動器遲滯補償 73 第5章 六軸奈米測量機平台之控制及量測 81 5.1 六軸奈米測量機平台之控制系統說明 81 5.2 六軸奈米測量機平台之量測系統校正 83 5.2.1 雷射光路校正 83 5.2.2 平面鏡組調整及檢驗 86 5.2.3 四象儀感測器(QD)校正 88 5.3 四軸壓電補償平台之控制 93 5.3.1 壓電平台補償之控制法則 93 5.3.2 壓電補償平台之最小解析度測試 98 5.3.3 壓電補償平台之步階響應 100 5.3.4 壓電補償平台Z軸作動之循跡控制結果 104 5.4 奈米測量機平台之控制 109 5.4.1 奈米測量機平台之控制法則 109 5.4.2 XY雙軸滑軌平台之控制結果 110 5.4.3 XY雙軸滑軌平台未補償之各軸干涉量 114 5.4.4 XY雙軸滑軌平台之各軸補償結果 116 第6章 結論與未來展望 119 6.1 結論 119 6.2 未來展望 120 參考文獻 121 作者簡歷 124

    [1] Youshiya Egashira, Kouji Kosaka, Shinji Takada, Tetsuya Iwabuchi, Tetsuro Baba, Shiro Moriyama, Takashi Harada, Keiichi Nagamoto, Akira Nakada, Hiroshi Kubota, and Tadahiro Ohmi, “0.69 nm Resolution Ultrasonic Motor for Large Stroke Precision Stage”, IEEE-NANO, T.12 Nano-Structure I,397-402(2001)
    [2] J. S. Chen, and I. C. Dwang, “A ballscrew drive mechanism with piezo-electric nut for reload and motion control”, International Journal of Machine Tools & Manufacture 40, 513–526 (2000)
    [3] Mike Holmes, Robert Hocken and David Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” 24, 191-209, 2000
    [4] Shobhit Verma, W. J. Kim, and Jie Gu, “Six-Axis Nanopositioning Device With Precision Magnetic Levitation Technology”, IEEE/ASME Transactions On Mechatronics, Vol. 9, NO. 2, 384-391(2004)
    [5] Won-jong Kim, “Six-Axis Nano-Positioning with Planar Magnetic Levitation”, IEEE-NANO, 174-179(2001)
    [6] Catalog, SIOS Meßtechnik GmbH, Am Vogelherd 46, D-98693 Ilmenau Germany, URL: http://www.sios.de
    [7] J. R. Matey, R. S. Crandall, and B. Brycki, “Bimorh-driven X-Y-Z Translation Stage for Scanned Image Microscopy,” Rev. Sci. Instrum., vol. 58, no. 4, April, 1987.
    [8] Peng Gao and Shan-Min Swei,”A six-degree -of-freedom micro-manipulator based on piezoelectric translators”, Nanotechnology 10, pp.447 452, 1999
    [9] 張所鋐,朱怡名,奈米級XYZ三自由度微定位平台,民89
    [10] 張所鋐,蔡奇陵,六自由度超精密奈米定位平台研製,民90
    [11] 黃宜正,劉保國,應用電腦輔助分析於設計壓電致動撓性鉸鏈平台之精準位移,90年
    [12] 張所鋐,吳冬立,並聯式六自由度奈米級微定位平台研製,91年
    [13] 張所鋐,陳家豪,奈米級精密定位平台之最佳位移解析度及軌跡圓之分析量量測,民92
    [14] Sreeram, P. N., Salvady, G. and Nagnatham, N. G., “Hystersis prediction for a piezoceramic material system”, In Proceedings of the 1993 ASME Winter Annual Meeting New Orleans, Vol. 35, New Orleans, La, USA, ASME Aerospace Division, pp. 35-42, 2001
    [15] Yu, Y., Naganathan, N. and Dukkipati, R., “Preisach modeling of Hysteresis for piezoceramic actuators system”, Mechanism and Machine Theory 37, pp. 49-59, 2002
    [16] Reinder Banning, Willem L. de Koning, Han J.M.T.A. Adriaens, Richard K. Koops, “State-space analysis and identification for a class of hysteretic systems”, Automatica 37, pp. 1883-1892, 2001
    [17] Croft, D. and Devasia, S. “Hysteresis and vibration compensation for piezoactuators”, Journal of Guidance, Control and Fynamics, Vol. 21, pp. 710-717, 1998
    [18] Kim, J. D. and Nam, S. R., “Apiezoelectrically driven micro-positioning system for the ductile-mode griding of brittle materials”, Journal of Materials Processing Technology 61, pp. 309-319, 1999
    [19] Ge P. and M. Jouaneh (1997). Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering, 20, pp. 99-111.
    [20] 李傑仁,(2003),具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用,國立成功大學航空太空工程研究所碩士論文。
    [21] 謝榮傑,(2002),微定位平台的CMAC控制和增益規劃控制,逢甲大學自動控制工程研究所碩士論文。
    [22] 楊智翔,(2004),壓電磁滯適應類神經控制補償之研究,國立高雄應用科技大學機械與精密工程研究所碩士論文。
    [23] Y. S. Kung and R. F. Fung, (2002), “Precision control of a piezoceramic actuator using neural networks,” IEEE conference on control application, pp. 1866-1871.
    [24] Stepanenko, Y. and C. Y. Su, (1998), “Intelligent control of piezoelectric actuators,” Proceedings of the 37th IEEE conference on Decision and Control, pp. 4234-4239.
    [25] Hwang, C. L., C. Jan and Y. H. Chen (2001). Piezomechanics Using Intelligent Variable- Structure Control. IEEE Transactions on Industrial Electronics, 48, pp. 47-59.
    [26] Hwang, C. L. and C. Jan (2003). A Reinforcement Discrete Neuro-Adaptive Control for Unknown Piezoelectric Actuator Systems With Dominant Hysteresis. IEEE Transactions on Neural Networks, 14, pp. 66-78.
    [27] Huang, Y. C. and D. Y. Lin (2004). Ultra-Fine Tracking Control on Piezoelectric Actuated Motion Stage Using Piezoelectric Hysteretic Model. Asian Journal of Control, 6, pp.208-216.
    [28] J.C. Shen, W.Y. Jywe, C.H. Liu, Y.T. Jian and Y.F. Deng, 2005,”Integral Sliding Mode Control of A Piezoelectric Actuated Motion Stage,”2005 IFAC World Congress.
    [29] 覺文郁、沈金鐘、陳世欣、劉建宏、簡裕特、吳家鴻,2004”五軸奈米級微動平台之順滑模態循跡控制”中華民國機械工程學會第二十一屆全國學術研討會論文集。
    [30] THK,http://www.thk.com/tw/products/class/crossroller_g/index.html
    [31] 耀毅企業有限公司,http://www.yauyih.com.tw/tw_news.php
    [32] SIOS Meßtechnik GmbH ,http://www.sios.de/INDEXENG.HTM
    [33] 張兆豐、小栗達男、小栗富士雄,1984,”機械設計圖表便覽”,台隆書店。
    [34] Piezomechanik,http://www.piezomechanik.com/en/home/products/index.html
    [35] 李浩瑋, ”奈米測量機Z-Tilts 誤差補償平台之設計、量測與循跡控制”,建國科技大學機電光系統研究所,2004。

    下載圖示 校內:2017-08-16公開
    校外:2017-08-16公開
    QR CODE