簡易檢索 / 詳目顯示

研究生: 張書銘
Zhang, Shu-Ming
論文名稱: 大氣電漿熔射不同比例及奈米結構氧化鋁-氧化鈦塗層磨潤性質研究
Tribological performance of APS Al2O3-TiO2 coatings with different ratios and nanostructure
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 110
中文關鍵詞: 大氣電漿熔射氧化鋁氧化鈦塗層磨潤
外文關鍵詞: APS, Al2O3, TiO2, Coating, Tribological
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究使用大氣電漿噴塗製程技術,於中碳鋼底材上披覆氧化鋁基熔射塗層;塗層與底材間披覆中介層以增加塗層與底材間之黏結性。研究的目標有二:(1) 不同比例之氧化鋁-氧化鈦塗層,(2) 次微米(傳統)與奈米氧化鋁-13wt.%氧化鈦塗層。主要在探討相結構、成分、顯微硬度值、磨潤性質、以及抗熱衝擊性能。
    XRD進行相結構分析;微克氏微小硬度計作顯微硬度試驗。透過摩擦試驗機進行摩擦試驗後,利用表面粗糙度量測儀量測磨痕深度,再使用電子顯微鏡觀察磨損表面及分析磨屑。抗熱衝擊試驗是將塗層試片經過反覆加熱淬火後,利用光學顯微鏡觀察表面,當出現明顯裂紋即為熱衝擊壽命。
    由實驗結果得知:(1) 氧化鋁基熔射塗層隨著氧化鈦比例提升,微硬度值明顯下降。(2) 磨潤性質方面,使用不同對手材會有不同的磨耗機制產生。(3) 添加越多氧化鈦之塗層在摩擦係數上明顯的偏高,耐磨耗性能也因此降低。(4) 不同尺度結構之塗層,以奈米尺度具有較佳之耐磨耗性,可歸因於其奈米結構,使破壞能量形成許多微細的裂縫而吸收掉,故能更加抗衝擊、耐磨耗。

    Abstract

    The alumina-based coatings were deposited on the mild carbon steel substrates pre-coated with NiAl bondcoat by using APS system in this research. The main purpose of this research was to study the effects of the alumina-titania coatings with different ratios and nanostructure on phase structure and composition and micro-hardness and tribological and anti-thermal shock properties.
    The phase structure analysis was carried out by XRD spectrum, micro-hardness values were measured by Vickers hardness tester. Dry wear tests were carried out using SRV machine, and the depth of the wear scar were measured by surface roughness measurement. Micrographs of the wear scar were observed by SEM. Thermal shock tests were performed by water quenching method, when a visible crack was detected by OM, the number of thermal cycles was recorded and defined as the number of cycles to failure.
    The results showed: (1) Micro-hardness values were decreased with increasing the ratio of titania. (2) Different wear performance was found with using different counter balls. (3) The friction coefficient was increased with increasing the ratio of titania. (4) The nanostructure coating with better anti-wear and anti-thermal shock performances was because of that the nanostructure could transform fracture energy into many micro-cracks.

    總 目 錄 口試合格證明 I 摘 要 II Abstract III 誌 謝 IV 總 目 錄 V 表 目 錄 VII 圖 目 錄 VIII 第一章 緒論 10 1-1 前言 10 1-2 研究動機 11 第二章 理論探討與文獻回顧 12 2-1 熱熔射技術演進 12 2-2 熱熔射技術基本原理 13 2-3 熱熔射塗層之微結構 13 2-4 熱熔射技術分類 14 2-4-1 高速燃氧熔射 15 2-4-2 火焰熔射 15 2-4-3 爆震熔射 17 2-4-4 電漿熔射 17 2-4-5 電弧熔射 19 2-4-6 液態火焰融射及動態冷噴塗 19 2-5 熱熔射塗層 20 2-5-1 傳統氧化鋁-氧化鈦陶瓷塗層 21 2-5-2 奈米結構氧化鋁-氧化鈦陶瓷塗層 24 2-5-3 中介塗層 27 第三章 實驗方法與步驟 28 3-1 實驗目的 28 3-2 實驗流程 28 3-3 實驗方法與規劃 29 3-3-1 試件製作、前處理 29 3-3-2 實驗參數規劃 30 3-3-3 粉末型態觀察 31 3-3-4 試件型態觀察 31 3-3-5 成分與元素分析 32 3-3-6 微結構分析 32 3-3-7 SRV磨耗試驗 32 3-3-8 顯微硬度試驗 33 3-3-9 熱衝擊試驗 34 3-4 實驗設備 34 第四章 實驗結果與討論 36 4-1 熔射粉末分析 36 4-1-1 粉末尺寸大小與形狀 36 4-1-2 粉末顯微組織與成分分析 37 4-1-3 粉末結構分析 37 4-2 熔射塗層分析 37 4-2-1 塗層結構分析 38 4-2-2 塗層表面顯微組織與成分分析 39 4-2-3 塗層橫截面顯微組織與成分分析 40 4-3 顯微硬度試驗 42 4-4 磨耗試驗 43 4-4-1 磨耗結果 43 4-4-2 磨耗機構 44 4-5 熱衝擊試驗 46 第五章 結論與未來展望 48 5-1 結論 48 5-2 未來展望 49 第六章 參考文獻 50 自 述 110 表 目 錄 表2-1 各種常見熔射製程及其塗層之特性[24] 59 表3-1 JIS S31C元素組成 60 表3-2 各塗層熔射製程參數 60 表3-3 熱熔射粉末基本資料 61 表3-4 粉末熔射塗層之配置 61 表3-5 鉻鋼球元素組成 62 表3-6 SRV磨耗試驗參數條件 62 圖 目 錄 圖2-1 熔融顆粒高速撞擊底材表面形成扁平顆粒示意圖 63 圖2-2 熱熔射製程示意圖[22] 63 圖2-3 熱熔射塗層示意圖 64 圖2-4 熱熔射技術分類示意圖[23] 64 圖2-5 高速燃氧熔射技術示意圖[25] 65 圖2-6 火焰熔射技術示意圖[25] 65 圖2-7 電漿熔射技術示意圖[27] 65 圖2-8 電弧熔射技術示意圖[21] 66 圖2-9 動態冷噴塗技術示意圖[21] 66 圖3-1 實驗流程圖 67 圖3-2 Sulzer Metco大氣電漿噴塗(APS)系統[68] 68 圖3-3 摩擦試驗設備示意圖 69 圖4-1 Fujimi DTS-A126氧化鋁陶瓷粉末(AT00)外觀形貌SEM與EDS成分分析 70 圖4-2 Sulzer Metco 130SF氧化鋁-13氧化鈦陶瓷粉末(AT13)外觀形貌SEM與EDS成分分析 71 圖4-3 Inframat nanoxs2613s氧化鋁-13氧化鈦陶瓷粉末(Nano13)外觀形貌SEM與EDS成分分析 72 圖4-4 Sulzer Metco AMDRY 6244氧化鋁-40氧化鈦陶瓷粉末(AT40)外觀形貌SEM與EDS成分分析 73 圖4-5 Metco 450NS鎳-5鋁中介層粉末外觀形貌SEM與EDS成分分析 74 圖4-6 Fujimi DTS-A126氧化鋁陶瓷粉末(AT00)剖面圖SEM與EDS成分分析 75 圖4-7 Sulzer Metco 130SF氧化鋁-13氧化鈦陶瓷粉末(AT13)剖面圖SEM與EDS成分分析 76 圖4-8 Inframat nanoxs2613s氧化鋁-13氧化鈦陶瓷粉末(Nano13)剖面圖SEM與EDS成分分析 77 圖4-9 Sulzer Metco AMDRY 6244氧化鋁-40氧化鈦陶瓷粉末(AT40)剖面圖SEM與EDS成分分析 78 圖4-10 Metco 450NS鎳-5鋁中介層粉末剖面圖SEM與EDS成分分析 79 圖4-11 氧化鋁基系列陶瓷粉末之XRD繞射圖 80 圖4-12 氧化鋁基系列陶瓷塗層之XRD繞射圖 81 圖4-13 氧化鋁-氧化鈦相平衡圖[70] 82 圖4-14 AT00陶瓷塗層之表面顯微組織SEM與BSE成分分析 83 圖4-15 AT13陶瓷塗層之表面顯微組織SEM與BSE成分分析 84 圖4-16 Nano13陶瓷塗層之表面顯微組織SEM與BSE成分分析 85 圖4-17 AT40陶瓷塗層之表面顯微組織SEM與BSE成分分析 86 圖4-18 AT00陶瓷塗層之橫截面顯微組織SEM與成分分析 87 圖4-19 AT13陶瓷塗層之橫截面顯微組織SEM與成分分析 88 圖4-20 Nano13陶瓷塗層之橫截面顯微組織SEM與成分分析 89 圖4-21 AT40陶瓷塗層之橫截面顯微組織SEM與成分分析 90 圖4-22 氧化鋁基系列陶瓷塗層之顯微硬度試驗結果 91 圖4-23 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗結果(對磨材:鉻鋼球) 91 圖4-24 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗結果(對磨材:氧化鋁球) 92 圖4-25 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗結果(對磨材:氮化矽球) 92 圖4-26 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗結果(平均值) 93 圖4-27 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:鉻鋼球) 94 圖4-28 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:鉻鋼球) 95 圖4-29 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:氧化鋁球) 96 圖4-30 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:氧化鋁球) 97 圖4-31 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:氮化矽球) 98 圖4-32 氧化鋁基系列陶瓷塗層之SRV點磨耗試驗磨痕形貌SEM與EDS成分分析(對磨材:氮化矽球) 99 圖4-33 氧化鋁基系列陶瓷塗層與鉻鋼球SRV點磨耗試驗摩擦係數圖 100 圖4-34 氧化鋁基系列陶瓷塗層與氧化鋁球SRV點磨耗試驗摩擦係數圖 100 圖4-35 氧化鋁基系列陶瓷塗層與氮化矽球SRV點磨耗試驗摩擦係數圖 101 圖4-36 AT40陶瓷塗層與鉻鋼球對磨之磨屑形貌SEM與EDS成分分析 102 圖4-37 AT40陶瓷塗層與氧化鋁球對磨之磨屑形貌SEM與EDS成分分析 103 圖4-38 AT40陶瓷塗層與氮化矽球對磨之磨屑形貌SEM與EDS成分分析 104 圖4-39 氧化鋁基系列陶瓷塗層之抗熱衝擊試驗結果 105 圖4-40 氧化鋁及氧化鈦陶瓷性質[70] 105 圖4-41 AT00陶瓷塗層之熱衝擊破壞後形貌及OM圖(100X) 106 圖4-42 AT13陶瓷塗層之熱衝擊破壞後形貌及OM圖(100X) 107 圖4-43 Nano13陶瓷塗層之熱衝擊破壞後形貌及OM圖(100X) 108 圖4-44 AT40陶瓷塗層之熱衝擊破壞後形貌及OM圖(100X) 109

    參考文獻

    1. S.J. Bull, R. Kingswell, K.T. Scott, The sliding wear of plasma sprayed alumina, Surface and Coating Technology 82 (1996), 218–225.

    2. K. Ramachandran, V. Selvarajan, P.V. Ananthapadmanabhan, K.P. Sreekumar, Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings, Thin Solid Films 315 (1998), 144–152.

    3. Bo Liang, Chuanxian Ding, Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying, Surface and Coatings Technology 197 (2005), 185–192.

    4. Shunyan Tao, Zhijian Yin, Xiaming Zhou, Chuanxian Ding, Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions, Tribology International 43 (2010), 69–75.

    5. G. Bayrak, Ş. Yılmaz, Crystallization kinetics of plasma sprayed basalt coatings, Ceramics International 32 (2006), 441–446.

    6. Yuansheng Jin, Yeyuan Yang, Tribological behavior of various plasma-sprayed ceramic coatings, Surface and Coating Technology 88 (1996), 248–254.

    7. Y. Muroya, A. Motoki, K. Shimanoe, T. Maeda, Y. Haruta, Y. Teraoka, N. Yamazoe, Densification of SiO2–Al2O3–TiO2 based ceramic film coated on steel for high thermal stabilty and mechanical properties, Surface and Coatings Technology 201 (2006), 880–885.

    8. H. Ageorges, P. Ctibor, Comparison of the structure and wear resistance of Al2O3–13 wt.%TiO2 coatings made by GSP and WSP plasma process with two different powders, Surface and Coatings Technology 202 (2008), 4362–4368.

    9. Th. Lampe, S. Eisenberg, E.R. Cabeo, Plasma surface engineering in the automotive industry—trends and future prospectives, Surface and Coatings Technology 174–175 (2003), 1–7.

    10. D. Stover, C. Funke, Directions of the development of thermal barrier coatings in energy applications, Journal of Materials Processing Technology 92–93 (1999), 195–202.

    11. Y. Wang, S. Jiang, M. Wang, S. Wang, T.D. Xiao, P.R. Strutt, Abrasive wear characteristic of plasma sprayed nanostructured alumina/titania coatings, Wear 237 (2000), 176–185.

    12. Xinhua Lin, Yi Zeng, Xiaming Zhou, Chuanxian Ding, Microstructure of alumina–3wt.% titania coatings by plasma spraying with nanostructured powders, Materials Science and Engineering A 357 (2003), 228–234.

    13. Y. Wang, W. Tian, Y. Yang, C.G. Li, L. Wang, Investigation of stress field and failure mode of plasma sprayed Al2O3–13%TiO2 coatings under thermal shock, Materials Science and Engineering A 516 (2009), 103–110.

    14. K.A. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Giménez, L. Cabedo, Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior, Surface and Coatings Technology 201 (2006), 1436–1443.

    15. V. Fervel, B. Normand, C. Coddet, Tribological behavior of plasma sprayed Al2O3-based cermet coatings, Wear 230 (1999), 70–77.

    16. N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, S. Jiansirisomboon, Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings:A role of nano-sized TiO2 addition, Surface and Coatings Technology 204 (2010), 1651–1657.

    17. K. Jia, T.E. Fischer, Sliding wear of conventional and nanostructured cemented carbides, Wear 203–204 (1997), 310–318.

    18. K. Jia, T.E. Fischer, Abrasion resistance of nanostructured and conventional cemented carbides, Wear 200 (1996), 206–214.

    19. S.-C. Liao, Y.-J. Chen, B.H. Kear, W.E. Mayo, High pressure/low temperature sintering of nanocrystalline alumina, Nanostructured Materials 10 (6) (1998), 1063–1079.

    20. S.-C. Liao, K.D. Pae, W.E. Mayo, The effect of high pressure on phase transformation of nanocrystalline TiO2 during hot-pressing, Nanostructured Materials 5 (3) (1995), 319–325.

    21. 蕭威典, “陶瓷/金屬材料噴塗技術之發展與應用”,工業材料雜誌,2004 年 4 月,164–169。

    22. 呂明生、蕭威典、劉茂賢, “熱熔射塗層技術在工業界之應用”,工業材料雜誌,2008 年 1 月,151–158。

    23. 劉茂賢, “熔射製程與即時監控技術之原理與應用簡介”,工業材料雜誌,2005年2 月,123–131。

    24. Ken Brookes, Thermal sprays are the stars at ‘Winterev 06’, Metal Powder Report 61 (2006) 42–49.

    25. 蕭威典, “熔射覆膜技術”,全華科技圖書股份有限公司,2006年7 月。

    26. J.M. Miguel, J.M. Guilemany, S. Vizcaino, Tribological study of NiCrBSi coating obtained by different processes, Tribology International 36 (2003), 181–187.

    27. 蕭威典、劉武漢, “電漿熔射技術簡介”,工業材料雜誌,2005 年 12 月,158–165。

    28. 蕭威典、劉武漢, “電漿熔射熱障塗層在高溫防護上之應用”,工業材料雜誌,2006 年 5 月,171–178。

    29. J. Tikkanen, K.A. Gross, J. Karthikeyan, V. Pitkanen, J. Keskinen, S. Raghu, M. Rajala, C.C. Berndt, Characteristics of the liquid flame spray process, Surface and Coatings Technology 90 (1997), 210–216.

    30. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, H. Herman, Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors, Nanostructured Materials 8 (1997), 61–74.

    31. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, H. Herman, Preparation of nanophase materials by thermal spray processing of liquid precursors, Nanostructured Materials 9 (1997), 137–140.

    32. 李文亞、李長久,“冷噴塗特性”,中國表面工程,2002,12–16。

    33. 吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,“超音速熔射技術簡介及其應用”,工業材料雜誌,2005年2 月,117–122。

    34. L. Zhao, J. Zwick, E. Lugscheider, HVOF spraying of Al2O3-dispersion-strengthened NiCr powders, Surface and Coatings Technology 182 (2004), 72–77.

    35. Yong Yang, You Wang, Wei Tian, Zhen-qiang Wang, Yue Zhao, Liang Wang, Han-min Bian, Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from nanostructured composite powders, Materials Science and Engineering A 508 (2009), 161–166.

    36. Sofiane Guessasma, Mokhtar Bounazef, Philippe Nardin, Tahar Sahraoui, Wear behavior of alumina–titania coatings: analysis of process and parameters, Ceramics International 32 (2006), 13–19.

    37. R. Yılmaz, A.O. Kurt, A. Demir, Z. Tatlı, Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating, Journal of the European Ceramic Society 27 (2007), 1319–1323.

    38. Ş. Yılmaz, An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13 wt.% TiO2 with bond coat on pure titanium substrate, Ceramics International 35 (2009), 2017–2022.

    39. Şenol Yılmaz, Mediha Ipek, Gözde F. Celebi, Cuma Bindal, The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3–13 wt% TiO2 coatings on AISI 316L stainless steel, vacuum 77 (2005), 315–321.

    40. S. Cem Okumus, Microstructural and mechanical characterization of plasma sprayed Al2O3–TiO2 composite ceramic coating on Mo/cast iron substrates, Materials Letters 59 (2005), 3214–3220.

    41. M. Wang, L. Shaw, Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings, Surface and Coatings Technology 202 (2007), 34–44.

    42. M.F. Morks, K. Akimoto, The role of nozzle diameter on the microstructure and abrasion wear resistance of plasma sprayed Formula Not Shown composite coatings, Journal of Manufacturing Processes 10 (2008), 1–5.

    43. Dianran Yan, Jining He, Xiangzhi Li, Yangaia Liu, Jianxin Zhang, Huili Ding, An investigation of the corrosion behavior of Al2O3-based ceramic composite coatings in dilute HCl solution, Surface and Coatings Technology 141 (2001), 1–6.

    44. Yang Yuanzheng, Zhu Youlan, Liu Zhengyi, Chuang Yuzhi, Laser remelting of plasma sprayed Al2O3 ceramic coatings and subsequent wear resistance, Materials Science and Engineering A 291 (2000), 168–172.

    45. Wang Aihua, Tao Zengyi, Zhu Beidi, Fu Jiangmin, Ma Xianyao, Deng Shijun and, Cheng Xudong, Laser modification of plasma-sprayed Al2O3-13wt.%TiO2 coatings on a low carbon steel, Surface and Coatings Technology 52 (1992), 141–144.

    46. V. López, M.L. Escudero, J.M. Belló, Laser melting of plasma-sprayed alumina coatings, Materials Science and Engineering A 172 (1993), 189–195.

    47. G. Gravanis, A. Tsetsekou, Th. Zambetakis, C. Stournaras, E. Hontzopoulos, Ceramic coatings and laser treatment, Surface and Coating Technology 45 (1991), 245–253.

    48. B. Normand, V. Fervel, C. Coddet, V. Nikitine, Tribological properties of plasma sprayed alumina–titania coatings: role and control of the microstructure, Surface and Coating Technology 123 (2000), 278–287.

    49. Józef Iwaszko, Surface remelting treatment of plasma-sprayed Al2O3 + 13 wt.% TiO2 coatings, Surface and Coating Technology 201 (2006), 3443–3451.

    50. Xiaoqin Zhao, Yulong An, Jianmin Chen, Huidi Zhou, Bin Yin, Properties of Al2O3–40 wt.% ZrO2 composite coatings from ultra-fine feedstocks by atmospheric plasma spraying, Wear 265 (2008), 1642–1648.

    51. E.P. Song, J. Ahn, S. Lee, N.J. Kim, Microstructure and wear resistance of nanostructured Al2O3–8wt.%TiO2 coatings plasma-sprayed with nanopowders, Surface and Coatings Technology 201 (2006), 1309–1315.

    52. E.P. Song, J. Ahn, S. Lee, N.J. Kim, Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3–8 wt.%TiO2 coatings plasma-sprayed with nanopowders, Surface and Coatings Technology 202 (2008), 3625–3632.

    53. R.S. Lima, C. Moreau, B.R. Marple, HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3-TiO2 powders: an enhanced wear performance, Journal of Thermal Spray Technology 16 (2007), 866–872.

    54. Leon L. Shaw, Daniel Goberman, Ruiming Ren, Maurice Gell, Stephen Jiang, You Wang, T. Danny Xiao, Peter R. Strutt, The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions, Surface and Coatings Technology 130 (2000), 1–8.

    55. Chang-sheng Zhai, Jun Wang, Fei Li, Jing-chao Tao, Yi Yang, Bao-de Sun, Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings, Ceramics International 31 (2005), 817–824.

    56. E. H. Jordan, M. Gell, Y. H. Sohn, D. Goberman, L. Shaw, S. Jiang, M. Wang, T. D. Xiao, Y. Wang, P. Strutt, Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties, Materials Science and Engineering A 301 (2001), 80–89.

    57. M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw, T. D. Xiao, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surface and Coatings Technology 146–147 (2001), 48–54.

    58. D. Goberman, Y. H. Sohn, L. Shaw, E. Jordan, M. Gell, Microstructure development of Al2O3–13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders, Acta Materialia 50 (2002), 1141–1152.

    59. Hong Luo, Daniel Goberman, Leon Shaw, Maurice Gell, Indentation fracture behavior of plasma-sprayed nanostructured Al2O3–13wt.%TiO2 coatings, Materials Science and Engineering A 346 (2003), 237–245.

    60. Xinhua Lin, Yi Zeng, Chuanxian Ding, Pingyu Zhang, Effects of temperature on tribological properties of nanostructured and conventional Al2O3–3 wt.% TiO2 coatings, Wear 256 (2004), 1018–1025.

    61. Xinhua Lin, Yi Zeng, Soo Who Lee, Chuanxian Ding, Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders, Journal of the European Ceramic Society 24 (2004), 627–634.

    62. Pavitra Bansal, Nitin P. Padture, Alexandre Vasiliev, Improved interfacial mechanical properties of Al2O3-13wt%TiO2 plasma-sprayed coatings derived from nanocrystalline powders, Acta Materialia 51 (2003), 2959–2970.

    63. A. Rico, J. Rodriguez, E. Otero, P. Zeng, W.M. Rainforth, Wear behaviour of nanostructured alumina–titania coatings deposited by atmospheric plasma spray, Wear 267 (2009), 1191–1197.

    64. Jianxin Zhang, Jining He, Yanchun Dong, Xiangzhi Li, Dianran Yan, Microstructure characteristics of Al2O3–13 wt.% TiO2 coating plasma spray deposited with nanocrystalline powders, Journal of Materials Processing Technology 197 (2008), 31–35.

    65. Y. Wang, W. Tian, Y. Yang, Thermal shock behavior of nanostructured and conventional Al2O3/13 wt%TiO2 coatings fabricated by plasma spraying, Surface and Coatings Technology 201 (2007), 7746–7754.

    66. Yang Yuanzheng, Liu Zhiguo, Liu Zhengyi, Chuang Yuzhi, Interfacial phenomena in the plasma spraying Al2O3+13 wt.% TiO2 ceramic coating, Thin Solid Films 388 (2001), 208–212.

    67. S. Das, S. Datta, D. Basu, G.C. Das, Glass–ceramics as oxidation resistant bond coat in thermal barrier coating system, Ceramics International 35 (2009), 1403–1406.

    68. Sulzer Metco公司網站產品目錄

    69. J.H. Ouyang, S. Sasaki, Tribological characteristics of low-pressure plasma-sprayed A12O3 coating from room temperature to 800 °C, Tribology International 38 (2005), 49–57.

    70. 李盈達,“電漿熔射高介電性Al2O3/TiO2塗層之研究”,國立交通大學機械工程研究所碩士論文,2001年6月。

    71. J. Rodriguez, A. Rico, E. Otero, W.M. Rainforth, Indentation properties of plasma sprayed Al2O3–13% TiO2 nanocoatings, Acta Materialia 57 (2009), 3148–3156.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE