簡易檢索 / 詳目顯示

研究生: 王士毓
Wang, Shih-Yu
論文名稱: C-群MADS-box基因在國蘭蕊柱發育之研究
Study of the C-class MADS-box genes in gynostemium morphogenesis of Cymbidium ensifolium
指導教授: 陳虹樺
Chen, Hong-Hwa
蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 66
中文關鍵詞: 國蘭蘭花C群基因蕊柱MADS-box
外文關鍵詞: gynostemium, Cymbidium ensifolium, Orchid, C-class genes, MADS-box
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭科植物為開花植物中數量最龐大的一科,目前約有25,000種以上。蘭科植物具有相當獨特的花部形態,其生殖構造是由雄蕊及雌蕊癒合形成單一個合蕊柱(gynostemium or column),此特徵可作為辨識蘭科植物的重要指標。
      本研究利用野生型國蘭及叢瓣化(multitepal mutant)突變植株為材料,探討C群基因在蘭花和合蕊柱發育中扮演之角色。我們選殖到國蘭之兩個C群基因之全長cDNA序列分別可轉譯出233及234個胺基酸,並命名為CeMADS1及 CeMADS2。親緣演化分析結果顯示,此二序列為蘭花之C群基因。透過比對CeMADS1 及CeMADS2在野生型及叢瓣型突變株序列分析,我們發現在叢瓣型突變株中CeMADS1 及CeMADS2的核苷酸皆出現數個點突變的情形,且會造成叢瓣型突變株type B胺基酸轉譯時的改變。空間表現模式分析結果顯示,CeMADS1只在合蕊柱中表現,在其他花部器及營養組織中皆不表現。而CeMADS2則主要表現於合蕊柱中,亦微量表現於其他花器,然而卻不會表現於營養組織。在花苞發育過程中,CeMADS1在初期的stage 1有較大量的表現,而CeMADS2則在stage 2以及後來的stage中有較明顯的表現。比較CeMADS1 及CeMADS2在野生型及叢瓣型突變株花苞中表現結果顯示,CeMADS1表現於野生型國蘭花苞中,但不表現於叢瓣型突變株中,而CeMADS2 則一致的表現於野生型及叢瓣型突變株花苞。另外,透過南方墨點法(Southern blot analysis)分析此二基因在國蘭基因體之存在情形,發現此二基因皆為single copy gene,且在突變株中並未改變其基因結構。我們更進一步利用酵母菌雙雜交系統(Yeast two-hybrid analysis),探討C- 及 E群基因的蛋白質交互作用。結果顯示,CeMADS1、CeMADS2和PeMADS8會形成同型或異型二聚體 (homo- or heterodimer),且CeMADS1同型二聚體及其和PeMADS8異型二聚體之交互作用能力皆比CeMADS2同型二聚體及其和PeMADS8異型二聚體強。最後,功能性分析部份,透過農桿菌轉殖法在阿拉伯芥中大量表現CeMADS1會導致花朵之花瓣和雄蕊萎縮以及雙雌蕊之外表型改變,而大量表現CeMADS2則並沒有改變野生型阿拉伯芥花形。
    綜合以上結果,我們推測CeMADS1在國蘭合蕊柱發育中扮演關鍵性的initiation之決定基因,而CeMADS2可能是存在的一個duplicate且在合蕊柱發育可能扮演maintenance的角色。

    The Orchidaceae is one of the most species-rich plant families and are renowned for their spectacular floral diversity. A gynostemium, comprising stamen filaments adnate to a syncarpous style, is one of the unique features of orchid reproductive organ. To understand MADS-box genes involved in gynostemium development of Cymbidium ensifolium, we isolated the full-length cDNA of two C-class genes with 233 and 234 amino acids, and named as CeMADS1 and CeMADS2, respectively. Phylogenetic analysis results showed that these two genes were clustered with other orchid C-class genes and classified into the C-lineage of the AG subfamily. The spatial expressions of CeMADS1 and CeMADS2 in various floral organs were analyzed by using northern blot, quantitative real-time RT-PCR and in situ hybridization. Results showed that both CeMADS1 and CeMADS2 expressed exclusively in the reproductive organs. In addition, CeMADS1 only expressed in the column, while CeMADS2 expressed in all floral organs. Both CeMADS1 and CeMADS2 were detected in all the developmental stages of flower buds. CeMADS1 was expressed more strongly in stage 1; while CeMADS2 was expressed more noticeably at subsequent stage than CeMADS1. We also characterized these genes from multitepal mutant of C. ensifolium. The flower of multitepal mutant of C. ensifolium has lost its gynostemium. Instead, it is replaced by a new emerged flower, and this ecotopic flower continues to produce sepals and petals centripetally. Comparing the nucleotide and amino acid sequences of CeMADS1 and CeMADS2 from the multipetal mutant with those of wild type, we found that point mutations occurred at the nucleotide level that lead to transition of amino acid sequences from Cysteine (C) to Tyrosine (Y) in CeMADS1, and from Lysine (K) to Asparagine (N) in CeMADS2 of multitepal mutant type B. Meanwhile, the expression of CeMADS1 was reduced to 1% and 11% in the flower buds of two multitepal mutants as compared to that in the wild-type plant. In contrast, the expression of CeMADS2 remained as 90% and 66% in two multitepal mutant flowers as compared to that of the wild-type plant. in situ hybridization results showed that both CeMADS1 and CeMADS2 transcripts were detected in the very early stage of floral primordium. At the later stages, they were more concentrated in the adaxial face of developing column. Southern blot analysis showed that both CeMADS1 and CeMADS2 were single-copy genes in the Cymbidium genome. In addition, there were no genomic structure alterations detected in the multitepal mutant. Moreover, homodimer as well as heterodimer formations were detected for CeMADS1, CeMADS2 and PeMADS8 proteins by using yeast two-hybrid analysis. Quantification of the interaction strength revealed that the interaction strength of CeMADS1 homodimer was similar to that of CeMADS1-CeMADS2 heterodimer but stronger than that of CeMADS2 homodimer. In addition, the interaction strength of CeMADS1-PeMADS8 heterodimer was also stronger than that of CeMADS2-PeMADS8 heterodimer. Functional analysis of these two genes were carried out by ectopic expression of these genes in transgenic Arabidopsis. Results showed that ectopical overexpression of CeMADS1 in transgenic plants caused the flowers with reduced petals and stamens. In contrast, no alterations in flower morphology were observed when ectopically overexpressing CeMADS2.
    In conclusion, the CeMADS1 is the column identity gene in Cymbidium orchids, while the CeMADS2 could be a duplicate of CeMADS1 but did not play an essential role in orchid column development. It is possible that CeMADS1 may play a role in the initiation step for column morphogenesis, while CeMADS2 may play a role in the maintenance step.

    誌謝 1 中文摘要 2 Abstract 3 List of Tables 7 List of Figures 8 List of Appendix 10 1. Introduction 1.1 Orchid flower structure 11 1.2 ABCDE model 12 1.3 MADS-box genes 12 1.4 C-class MADS-box gene: AGAMOUS (AG) 13 2. Purpose & Specific aims 15 3. Materials and methods 3.1 Plant materials 16 3.2 RNA preparation 16 3.3 3′- and 5′-rapid amplification of CeMADS cDNA ends (RACE) 16 3.4 Sequence data analysis 16 3.5 Phylogenetic analysis 17 3.6 Isolation of genomic DNA and Southern blot analysis 17 3.7 Northern blot hybridization 17 3.8 Real-time quantitative RT-PCR 18 3.9 in situ hybridization 18 3.10 Yeast two-hybrid analysis 18 4. Results 4.1 Cloning and sequence analysis of the C-class MADS genes in C. ensifolium 20 4.2 Comparison of CeMADS1 and CeMADS2 sequence between wild-type and multitepal mutant C. ensifolium 20 4.3 Spatial and temporal expression analysis of CeMADS genes in C. ensifolium 20 4.4 in situ localization of CeMADS1 and CeMADS2 transcripts 21 4.5 Southern blot of CeMADS genes in C. ensifolium 21 4.6 Protein-protein interactions 22 4.7 Ectopic expression of CeMADS1 and CeMADS2 in Arabidopsis 22 5. Discussion 5.1 C-class gene duplication event in C. ensifolium 24 5.2 Spatial and temporal expression of C-class genes in orchids 25 5.3 MADS-box protein complexes mediated organ development 25 5.4 Ectopic expression of CeMADS1 and CeMADS2 in Arabidopsis 26 5.5 Regulation of C-class genes in orchid 27 References 28 Tables 35 Figures 40 Appendix 63

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.

    Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ. (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.

    Bao X, Franks RG, Levin JZ, Liu Z. (2004) Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell 16: 1478-1489.

    Benedito VA, Visser PB, van Tuyl JM, Angenent GC, de Vries SC, Krens FA. (2004) Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J. Exp. Bot. 55: 1391-1399

    Becker A, Theissen G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29: 464-489.

    Busch MA, Bomblies K, Weigel D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285: 585-587.

    Bowman JL, Drews GN, Meyerowitz EM. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3: 749-758.

    Bowman JL, Smyth DR, Meyerowitz EM. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.

    Colombo L, Franken J, Van der Krol AR, Wittich PE, Dons HJ, Angenent GC. (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.

    Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ. (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell ;7(11): 1859-1868

    Coen ES, Meyerowitz EM. (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.

    Carpenter R, Coen ES. (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4: 1483-1493.

    Carlson LE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeldt C and Rutledge R. (1991) Segregation of random amplified DNA markers in F1 progeny of conifers. Theor. Appl. Genet. 83: 194-200.

    Puy DD, Cribb P. (2007) The genus Cymbidium. Royal Botanic Gardens, Kew. Surrey, UK.

    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940.

    Deyholos MK, Sieburth LE. (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12: 1799-1810.

    Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z. (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18: 4023-4034.

    Dolan JW, Fields S. (1991) Cell-type-specific transcription in yeast. Biochim. Biophys. Acta. 16:155-169

    Drews GN, Weigel D, Meyerowitz EM. (1991) Floral patterning. Curr. Opin. Genet. Dev.1: 174-178.

    Dressler, R.L. (1990) The Orchids: Natural History and Classification. Harvard University Press, Cambridge, MA.

    Egea-Cortines M, Saedler H, Sommer H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.

    Favaro R, Immink RG, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L. (2002) Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol. Genet. Genomics 268: 152-159

    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L. (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611.

    Giacomini A, Corich V, Ollero FJ, Squartini A, Nuti MP. (1992) Experimental conditions may affect reproducibility of the beta-galactosidase assay. FEMS Microbiol. Lett. 79: 87-90.

    Gietz D, St. Jean A, Woods RA, (1992) Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 20: 1425.

    Hasebe M, Wen CK, Kato M, Banks JA. (1998) Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci .USA. 95: 6222-6227.

    Honma T, Goto K. ( 2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.

    Irish VF. (2003) The evolution of floral homeotic gene function. Bioessays 25: 637-646.

    Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225.

    Kang HG, Jeon JS, Lee S, An G. (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021-1029.

    Kang HG, Noh YS, Chung YY, Costa MA, An K, An G. (1995) Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol. 29: 1-10.

    Kempin SA, Mandel MA, Yanofsky MF. (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol. 103: 1041-1046.

    Kramer EM, Jaramillo MA, Di Stilio VS. (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166: 1011-1023.

    Kull T, Arditti J. (2002) Orchid Biology: reviews and perspectives VIII: 83-138. Kluwer Academic Publishers, Netherlands.

    Kyozuka J, Shimamoto K. (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol. 43: 130-135.

    Liu KW, Liu ZJ, Huang L, Li LQ, Chen LJ, Tang GD. (2006) Pollination: self-fertilization strategy in an orchid. Nature 441: 945-946.

    Li QZ, Li XG, Bai SN, Lu WL, Zhang XS. (2002) Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215: 533-540.

    Lopez-Dee ZP, Wittich P, Enrico Pe M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L. (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25: 237-244.

    Ma H, Yanofsky MF, Meyerowitz EM. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484-495.

    Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF. (1992) Manipulation of flower structure in transgenic tobacco. Cell 71: 133-143.

    Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ. (1996) Diversification of C-function activity in maize flower development. Science 274: 1537-1540.

    Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. (1996) Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8: 831-845.

    Mizukami Y, Ma H. (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393-408.

    Mizukami Y, Ma H. (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.

    Nash, N. (1996) Flavor of the Month: Cymbidium ensofolium.

    Ng M, Yanofsky MF. (2000) Three ways to learn the ABCs. Curr. Opin. Plant Biol. 3: 47-52.
    O’Neill SD, Nadeau J.A, Zhang XS, Bui AQ, Halevy AH. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419–432.

    Okamuro JK, den Boer BG, Lotys-Prass C, Szeto W, Jofuku KD. (1996) Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 93: 13831-13836.

    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.

    Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF. (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394.

    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88.

    Rigola D, Pè ME, Fabrizio C, Mè G, Sari-Gorla M. (1998) CaMADS1, a MADS box gene expressed in the carpel of hazelnut. Plant Mol. Biol. 38: 1147-1160.

    Saedler H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.

    Sambrook J, Fritsch EF, Maniatis T. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF. (1993) Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729-737

    Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.

    Sieburth LE, Meyerowitz EM. (1997) Molecular dissection of the AGAMOUS control region shows that cis-elements for spatial regulation are located intragenically. Plant Cell 9: 355-365.

    Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366: 266-274.

    Smyth DR, Bowman JL, Meyerowitz EM. (1990) Early flower development in Arabidopsis. Plant Cell 2: 755-767.

    Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev. Genes Evol. 216: 301-313.

    Sridhar VV, Surendrarao A, Liu Z. (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133: 3159-3166

    Stpiczyńska M, Davies KL, Gregg A. (2005) Comparative account of nectary structure in Hexisea imbricata (Lindl.) Rchb.f. (Orchidaceae). Ann. Bot. (Lond). 95: 749-756.

    Theissen G, Saedler H. (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr. Opin. Genet. Dev. 5: 628-639.

    Theissen, G. and Saedler, H. (2001) Floral quartets. Nature 409: 469-471.

    Treisman R. (1995) DNA-binding proteins. Inside the MADS box. Nature. 376: 468-469.

    Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45: 831-844.

    Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol., 46: 1125-1139.

    Tsai WC, Pan ZJ, Hsiao YY, Jeng MF, Wu TF, Chen WH, Chen HH. (2008) Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 49: 814-824

    Tsuchimoto S, van der Krol AR, Chua NH. (1993) Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5: 843-853.

    Tzeng TY, Chen HY, Yang CH. (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol. 130: 1827-1836.

    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.

    Xu HY, Li XG, Li QZ, Bai SN, Lu WL, Zhang XS. (2004) Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Mol. Biol. 55: 209-220.

    Xu Y, Teo LL, Zhou J, Kumar PP, Yu H. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46: 54-68.

    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39.
    Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, dePamphilis CW, Becker A, Theissen G, Ma H. (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol. Dev. 8: 30-45.

    下載圖示 校內:2011-08-05公開
    校外:2013-08-05公開
    QR CODE