| 研究生: |
徐偉泓 Hsu, Wei-Hung |
|---|---|
| 論文名稱: |
應用高介電陶瓷開發GPS矩形平板式微帶天線及生產製程設計與管控之研究 Apply the High Dielectric Ceramic Materials in the Development of GPS Rectangular Microstrip Patch Antenna Research |
| 指導教授: |
張守進
Chang, S. J. 黃正亮 Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 全球衛星定位系統 、微波介電材料 、矩形平板式微帶天線 、製程居中能力指數 |
| 外文關鍵詞: | Global Positioning System, GPS, Microwave Dielectric Material, Rectangular Microstrip Patch Antenna, RMPA, Complex Process Capability index, CPK. |
| 相關次數: | 點閱:172 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的在於應用高介電的陶瓷材料開發GPS矩形平板式微帶天線及生產製程設計與管控之研究,探討介電陶瓷材料對於平板天線尺寸與電氣特性之影響,以及應用此高介電陶瓷材料開發平板天線產品,於生產製造流程中所要控制的項目,藉此研究達到高介電陶瓷材料之應用以及平板天線量化生產之目的。
論文之內容主要分為三個部份:第一部分為高介電陶瓷材料之研究,選擇一已知之高介電陶瓷材料,瞭解此陶瓷材料於生產時材料特性範圍;第二部分則是平板式微帶天線的設計,利用HFSS模擬軟體,設計、模擬適合之GPS平板天線;並以第一部份的高介電陶瓷材料製作GPS平板天線,進行實際的生產作業;第三部分則按此設計參數制定一生產流程的管控方式,據此執行小批量的製作生產,確認於施行管控作為後,此GPS平板天線於電氣特性的一致性及生產良率之數據,並以製程居中能力指數Cpk來評判實驗結果,藉此檢視此製程管制作為以及生產參數的制定內容是否妥善,進而達到小型化GPS平板天線穩定生產之目的。
The purpose of this research is to apply the high dielectric ceramic materials in the development of GPS rectangular microstrip patch antenna, the production process design and control; to study the dielectric ceramic materials affect on the size and electrical properties of the patch antenna; and to apply this type of high dielectric ceramic material in the development of patch antenna products, particularly as the control subject within the production process. Thus, utilize this study to achieve high dielectric ceramic material application and patch antenna mass production.
This thesis is mainly divided into three parts: the first part is the research of high dielectric ceramic materials, a known high dielectric ceramic material was chosen and its material property range during production was understood; the second part is microstrip patch antenna design, HFSS simulation software was used to design and simulate the most suitable GPS patch antenna, and the high dielectric ceramic materials of the first part was used to produce the GPS patch antenna within the actual production process; the third part is to set up a production control method based on the previous design parameters, and, implement a small-volume production. The electrical characteristic consistencies and production measuring data of this GPS patch antenna, and Cpk process capability index were used to determine the results. In turn, this process examines the approprietness of this production process control method and the content of the production parameters, in the end, achieve the purpose of microstrip patch antenna production stability.
〔1〕 曾清涼、儲慶美編著,GPS衛星測量原理與應用(GPS Satellite Surveying Principles and Application),第一版,3月1日,1999年。
〔2〕 R. D. Richtmyer, “Dielectric Resonators,” Journal of Applied Physics 10 (6), 1939, pp. 391-398.
〔3〕 David M.Pozar “Microwave Engineering”, Addison-Wesley, 1998.
〔4〕 D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
〔5〕 D. Kajfez,“ Basic principle give understanding of dielectric waveguides and resonators , ” Microwave SysTFm News, vol. 13, pp. 152-161, 1983
〔6〕 D. Kajfez, and P. Guillon, Dielectric resonators. , New York: Artech House, 1989.
〔7〕 李俊遠,GPS微波介電材料與GPS天線設計概念,台北,電子與材料雜誌,第14期,2002,第105頁。
〔8〕 T. Yamaguchi, Y. Komatsu, T. Otobe, Y. Murakami, “Newly Developed Ternary (Ca, Sr, Ba) Zirconate Ceramic System for Microwave Resonator,” Ferroelectrics, 27(1 /4) , 1979, pp. 273-276.
〔9〕 P. C. Osbond, R. W. Whatmore, F. W. Ainger, “The Properties and Microwave Application of Zirconium Titanate Stannate Ceramics,” British Ceramic Proceedings (36), 1985, pp. 167-178.
〔10〕 S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, and S. Hayakawa, “Dielectric Properties of Ba(Zn1/3Nb2/3)O3-Ba(Zn1/3Ta2/3)O3 Ceramics,” Proc. Ferroelectr. Mater. Appl. Japan, vol. 1, 1977, pp. 1455-1463.
〔11〕 S. Nomura, K. Kaneta, and K. Toyama, “Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature-Stable High Dielectrics Constant and Low Microwave Loss,” Jpn. J. App. phys., vol. 21(10), 1982, pp. L624-626.
〔12〕 Kingery, Bowen, Uhlmann, 陳皇鈞譯,陶瓷材料概論, 曉園出版社。
〔13〕 W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”, Sintering Processes, Plenum Press, pp. 189-202, 1979.
〔14〕 V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch.
〔15〕 K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy, 1984.
〔16〕 J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
〔17〕 A. M. GLAZER, Acta Cryst, vol. A31, pp. 756, 1975.
〔18〕 E. L. COLLA, I. M. REANEY and N. SETTER, Jpn. J. Appl. Phys., vol. 74, pp. 3414, 1993.
〔19〕 A. Meden and M. Ceh, Material Science Forum 773, pp. 278-281, 1998.
〔20〕 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
〔21〕 L. A. Trinogga, Guo Kaizhou, I. C. Hunter, “Practical microstrip circuit design,” UK: Ellis Horwood, 1991.
〔22〕 K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
〔23〕 E. O. Hammerstard, in Proceedings of the european microwave conference, pp. 268-272, 1975.
〔24〕 E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980.
〔25〕 David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998.
〔26〕 R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
〔27〕 K. C. Gupta and M. D. Abouzahra, Analysis and Design of Planar Microwave Components, ISBN 0-7803-0437-3, Chap. 11, 1994.
〔28〕 G. A. Deschamps, Microstrip Microwave Antennas, presented at the 3rd. USAF Symp. on Antennas, 1953.
〔29〕 白光弘,天線原理及應用,文明,台北,1992。
〔30〕 C. A. Balanis, Antenna Theory Analysis and Design, New York: John Wiely & Sons, 1997.
〔31〕 Girish Kumar and K. P. Ray, Broadband Microstrip Antennas, Boston: Artech House,2003.
〔32〕 根日屋英之、小川真紀,無線通訊時代的天線設計,全華,2008。
〔33〕 G. Dubost and S. Zisler, “Antennas a Large Band,” New York: Masson, pp. 128-129, 1976.
〔34〕 H. Nakano and J. Yamauchi, “Axial Ratios of Spiral Antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 19, pp 679-682, 1981.
〔35〕 IEEE Standard Test Procedures for Antennas, IEEE Standard 149, 1979.
〔36〕 Bee Yen Toh, Robert Cahill, and Vincent F. Fusco, “Understanding and measuring circular polarization,” IEEE Trans. Education, vol. 46, no. 3, Aug. 2003.
〔37〕 Dr.R.B. Waterhouse RMIT University" Microstrip Patch Antennas: A Designer’s Guide,"kluwer Academic Publishers,2002.
〔38〕 Kin-Lu Wong, "Compact Broadband Microstrip Antennas ," John Wiley & Sons,2002.
〔39〕 鄧聖明、蔡慶龍、柏小松,天線設計與應用-使用Ansoft HFSS模擬器,鼎茂,2009。
〔40〕 中國國家標準,精密陶瓷微波射頻介電特性試驗法,經濟部標準檢驗局印行,總號14390,類號R3206,1999。