| 研究生: |
王德詮 Wang, Te-Chuan |
|---|---|
| 論文名稱: |
基於電動力學微流體晶片發展乙型鏈球菌快速檢測平台 Development of rapid Group B Streptococcus detection platform based on electrockinetic microfluidic chip |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 介電泳 、交流電滲流 、乙型鏈球菌 、螢光標示抗體 |
| 外文關鍵詞: | Dielectrophoresis, AC electroosmosis, GBS, Fluorescent antibody |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙型鏈球菌 (GBS) 為一種人體內常在的革蘭氏陽性菌,主在分布在消化道系統和泌尿道系統。根據臨床統計約有20% 的孕婦體內含有此菌,若新生兒感染到此菌容易造成肺炎、腦膜炎甚至敗血症等會造成嚴重後遺症的疾病,因此為孕婦產檢的重要項目之一。目前產檢的SOP是在預產期前三到五週進行檢查,所需約三到五天的檢查時間,但此耗時長的檢測方式無法應對如早產等緊急的突發狀況。針對臨床檢測的缺點,本研究將展示一種以電動力學原理為理論基礎的環狀指叉型電極,並藉此發展一套快速檢測平台。透過電動力學中的介電泳力和電滲流收集如細菌等微米粒子的能力和使用螢光抗體來進行菌種辨識,搭配對螢光收集影像的顆數分析及細菌螢光檢量線,便可避開如塗盤培養法等耗時長的方法,提供另一選擇來達到快速檢測的目地。樣本的前處理分為預培養和菌種螢光標示,預培養為使用10% Lim broth 培養10小時;螢光抗體的混和時間為1小時,而洗淨時離心參數為5000g進行10分鐘。電極的電性操作參數為12 Vpp, 500 Hz,收集時間為8分鐘。平台的細菌濃度檢測極限為臨床檢體中30顆,培養後樣本濃度10^6~10^4 CFU/ml。總檢測時間約為12小時而模擬樣本的檢測準確度為75%。在未來,在搭配不同螢光抗體的使用下,此環狀指叉型電極平台還可應用在其他需要進行細菌檢測的領域,如益生菌等發酵產業以及醫療產業等。
Group B Streptococcus (GBS) is a kind of gram-positive bacterium colonizing around 20% of pregnant women. Since newborns lack mature immune system, they will easily get diseases such as pneumonia, meningitis and even sepsis after getting infection. It takes three to five days for the clinical method to get the result. But this time-consuming method cannot cope with emergency situations such as premature birth. Because of this unmet need, a rapid GBS detection platform based on a ring-shape interdigitated electrode (RIDE) is developed in this study. After the pretreatment protocol, the bacteria in the sample will be concentrated by dielectrophoretic and AC electroosmotic force. The CCD camera and microscope are applied to capture the collection image and detection result can be obtained after combing the image analysis result and a fluorescence calibration curve. The entire detection will be finished within 12 h. For the pretreatment process, the sample will be cultured first in 10% Lim broth for 10 h and then mixed with fluorescent antibody for 1 h. The centrifugal parameter of buffer washing is 5000g for 10 min. The operating parameters for the electrode are 12 Vpp, 500 Hz, and the collection time is 8 min. The detection limit of the platform’s sample bacteria concentration is 〖10^6~10〗^4 CFU/ml. The spiked samples have been detected and the accuracy is 100%. In the future, clinical sample will be tested to verify the feasibility of applying the platform in medical industry. By combining it with the use of different fluorescent antibody, the platform can be applied in fields, which requires bacteria detection such as probiotic fermentation industry.
[1] W.-R. Lin, P.-L. Lu, Y.-T. Jao, C.-L. Chen, Y.-H. Chen, Epidemiology of invasive Group B Streptococcal infections in non-pregnant adults in Taiwan: A literature review, Nosocom Infect Control J, 24, 178-187, 2014
[2] S.D. Manning , K. Neighbors, P. A. Tallman, B. Gillespie, C.F. Marrs, S.M. Borchardt, C.J. Baker, M.D. Pearlman, B. Foxman, Prevalence of group B Streptococcus colonization and potential for transmission by casual contact in healthy young men and women. Clin Infect Dis, 39, 380-8, 2004
[3] S.J. Bliss, S.D. Manning, P.A. Tallman, et al, Group B Streptococcus colonization in male and nonpregnant female university students: a crosssectional prevalence study. Clin Infect Dis, 34, 184-90, 2004
[4] H.G. Davies, C. Carreras-Abad, K. Le Doare, and P.T. Heath, Group B Streptococcus: Trials and Tribulations, Pediatr Infect Dis J, 38, S72-76, J2019
[5] A.C. Seale, F. Bianchi-Jassir, N.J. Russell, M. Kohli-Lynch, C.J. Tann, J. Hall, L. Madrid, H. Blencowe, S. Cousens, C.J. Baker, L. Bartlett, C. Cutland, M.G. Gravett, P.T. Heath, M. Ip, K. Le Doare, S.A. Madhi, C.E. Rubens, S.K. Saha, S.J. Schrag, A.S. Meulen, J. Vekemans, J.E. Lawn, Estimates of the burden of Group B Streptococcal disease worldwide for pregnant women, stillbirths, and children, Clin Infec Dis, 65, S200-S219, 2017
[6] 孕婦乙型鏈球菌流行病學、培養檢體處理及常在菌型態特性介紹-台灣醫事檢驗協會, 2017/07/09
[7] A.K.M.S. Islam, Rapid recognition of group B streptococci, Lancet, 309(8005), 256-257, 1977.
[8] W.-S. Tsai, C.-J. Ho, C.-F. Hong, W.-C. Tsai, The performance of GBS Carrot Broth and GBS TransCultSwab in the detection of Group B Streptococci in near-term pregnant women, J Test Quali Assur, 5, 1, P1-10, 2016
[9] R. Bernini, E. de-Nuccio, F. Brescia, A.Minardo, L. Zeni, P.M. Sarro, R. Palumbo, M. R. Scarfi, Development and characterization of an integrated silicon micro flow cytometer, Anal Bioanal Chem, 386, 1267-1272, 2006
[10] F. Munari, F. de-Paris, G. Salton, P.S. Lora, P. Giovanella, A.B.M.P. Machado, L.S. Laybauer, K.R.P. Oliveira, C. Ferri, J.L.S. Silveira, C.C.F.C. Laurino1, R.M. Xavier, A.L. Barth, S. Echeverrigaray, J.P. Laurin, A combined enrichment/polymerase chain reaction based method for the routine screening of Streptococcus agalactae in pregnant women, Brazilian J Microb, 253-260, 2012
[11] M.R. Khalil, N. Uldbjerg, P.B. Thorsen, B. Henriksen, J.K. Møller, Corrigendum to “Risk-based screening combined with a PCR-based test for group B streptococci diminishes the use of antibiotics in laboring women” Reprod Biol, 215, 188–192, 2017
[12] R.B. Helmig, J.B. Gertsen, Diagnostic accuracy of polymerase chain reaction for intrapartum detection of group B streptococcus colonization, Acta Obstet Gynecol Scand , 96, 1070-1074, 2017
[13] M.P. Hughes, Strategies for dielectrophoretic separation in laboratory-on-a-chip systems, Electrophoresis, 23, 2569–2582, 2002
[14] L. Yang, A review of multifunctions of dielectrophoresis in biosensors and biochips for bacteria detection, Anal Lett, 45:2-3, 187-201, 2012
[15] Z. Zou, S. Lee, C.H. Ahn, A polymer microfluidic chip with interdigitated electrodes arrays for simultaneous dielectrophoretin manipulation and impedimetric detection of microparticles, IEEE Sensor J, 8, 5, 2008
[16] L. D'Amico, N. J. Ajami, J. A. Adachi, P. R. C. Gascoyne and J. F. Petrosino, Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis, Lab Chip, 17, 1340–1348, 2017
[17] H.M.a.N.G. Green, AC Electrokinetics: colloids and nanoparticles, Research Studies Press LTD, 2003.
[18] A. Ramos, Electroosmotic and AC electroosmotic micropumps, in CISM, 2009.
[19] S. Zeng, C.-H. Chen, J.C. Mikkelson, J.G. Santiago, Fabrivcation and characterization of electroosmosis micropump, Sens Actuators B, 79, 107-114, 2001
[20] J.-T. Wu, J.-R. Du, Y.-J. Juang, H.-H. Wei, Rectified elongational streaming due to asymmetric electro-osmosis induced by ac polarization, Appl Phys Lett 90, 13, 2007
[21] A. Salari, M. Thompson, Recent advances in AC electrokinetic sample enrichment techniquesfor biosensor development, Sens Actuators B, 255, 3601–3615, 2018
[23] B. Larsen and G.R.G. Monif, Understanding the bacterial flora of the female genital tract, Clin Infect Dis, 32, P 69–77, 2001
[24] K. Im, S. Mareninov, M.F.P. Diaz, W.H.Yong, An introduction to performing immunofluorescence staining, Methods Mol Biol, 1897, 299–311, 2019