| 研究生: |
黃宣叡 Huang, Shuan-Ray |
|---|---|
| 論文名稱: |
熱管中三維流場之數值模擬研究 3-D Numerical Simulation of The Flow in a Heat-Pipe |
| 指導教授: |
江滄柳
Jiang, Tsung Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 熱管 、數值模擬 、三維流場 |
| 外文關鍵詞: | heat pipe, numerical simulation, three-dimensional flow |
| 相關次數: | 點閱:72 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以修改KIVA-3程式所建立之三維熱管計算程式,以計算在熱管中之兩相流場及其溫度分布,並討論當在不同受熱方式,及不同的管徑大小所造成之影響,由模擬結果可知,在固定輸入總熱量及散熱環境下,不均勻受熱會造成不對稱之加熱端流場及壁面溫度分佈,在加大熱管管徑時,熱管內氣體或液體部分的溫度,壓力跟速度皆會隨之減小,也同時壁面溫度分布也會降低,但熱管管壁溫度趨近於穩定的時間則增長,在固定散熱環境下跟熱管尺寸下,較大的輸入熱量導致較高的熱管管壁溫度,氣體的溫度,壓力及密度,但是對於壁面溫度趨近於穩定所需要的時間卻沒有明顯的影響,再改變散熱效率時,較大的散熱效率對於熱管的壁面溫度氣體壓力及溫度會降低,但是對於氣體及液體的速度卻有增加的情況,但對於壁面溫度趨近於穩定的時間卻明顯的減少,而風扇所在的位置在本研究中h值很大的情況下會影響散熱端的溫度分布,但比起加熱端所產生的溫度差卻相當的小,對於壁面溫度趨近於穩定的時間,以及軸向氣體的速度分布沒有太大的影響。
A computer simulation code is developed for the thermal and flow analyses of a heat pipe by adapting the KIVA-3 software. Effects of heating modes and heat-pipe radius on the flow and temperature distributions are investigated. The results obtained from the numerical simulation indicate that with a fixed total heat input and a specified cooling heat-transfer coefficient, effects of heating modes on the flow field and wall-temperature distributions are significant. As the heat-pipe radius is increased, the temperature, pressure, and velocity of both gas and liquid flows decrease. The wall temperature decreases as well. However, it takes a longer time for the wall temperature to reach a steady value. More heat input leads to a higher gas-flow pressure, density, and temperature. But the resulting gas velocity is lower. A higher cooling heat-transfer coefficient, on the other hand, leads to lower gas and wall temperatures. It also shortens the time for the wall to reach a steady temperature. The flow direction of the cooling fan may affect the temperature of the cooling section. But the effect is not significant with a high heat transfer coefficient.
[1] W. S. Chang and G. T. Colwell, “Mathematical Modeling of the Transient Operating Characteristics of a Low- Temperature Heat Pipe”, Numerical Heat Transfer, Vol 8, pp169-186, 1985.
[2] M. Chen and A. Faghri, “ An Analysis of the Vapor Flow and the Heat Conduction Through the Liquid-Wick and Pipe Wall in a Heat Pipe with Single or Multiple Heat Source “, Int. J. Heat Mass Transfer, vol.33, no.9, pp.1945-1955, 1990.
[3] J. M. Tournier and M. S. El-Genk, ” A Heat Pipe Transient Analysis Model ”, Int. J. Heat Mass Transfer, Vol.37, No.5, pp.753-762, 1994.
[4]R.C.Mehta,T.Jayachandran”Numerical analysis of transient two phase flow in heat pipe” Heat and Mass Transfer 31(1996)383-386.
[5] Z. J. Zuo and A. Faghri, ” Boundary Element Approach To Transient Heat Pipe analysis ”, Numerical Heat Transfer, PartA, pp205-220, 1997.
[6] J. H. Rosenfeld, “ Modeling of Heat Transfer into a Heat Pipe for a Localized Heat Input Zone”, Proc. AIChE Symp. Ser. Heat Transfer, vol.83, pp.71-76, 1987.
[7] 卓士淮,加熱部與冷卻部面積對熱管氣相流場之影響數值模擬,碩士論文,國立成功大學航太工程學系,2002。
[8] 蔡宗翰,不同形狀對熱管蒸氣流場之影響,碩士論文,國立成功大學航太工程學系,2002。
[9]Mohamed S. El-Genk, Lianmin Huang and Jean-Tournier” Transient Experiments of Inclined Cooper-Water Heat Pipe” Journal of Thermophysics and Heat Transfer Vol.9 No.1 January-March 1995.
[10] 趙晏佑,嵌入式散熱效益之研究,碩士論文,國立成功大學工科所,2000。
[11] 卓世傑,銅粉燒結型微熱管之研究,碩士論文,國立台北科技大學機
電整合研究所,2000。
[12] 黃文宏,燒結式微熱管之製造與性能測試,碩士論文,國立台灣大學機械研究所,2000。
[13] 賴衍村,熱管散熱效益之研究,碩士論文,國立成功大學工程科學所,2001。
[14] 王輝雄,熱管散熱模組效能探討,碩士論文,國立成功大學工程科學所,2002。
[15]Pak-Yan Ling ,Steven Fisher and Y. Mason Chang
”Comprehensive Modeling of Liquid Rocket combustion Chamber”J.Propulsion,Vol2,No2,AIAA,1986.
[16] Ding-Yu Peng and Donald B. Robinson, “ A New Two Constant Equation of State ”, Ind. Eng. Chem.,Fundam., Vol.15, pp.59 – 64, 1976.
[17] Jens Ahlers, Jurgen Gmehling, “ Development of an Universal Group Contribution Equation of State: 1. Prediction of Fluid Densities for Pure Compounds with an Volume Translated Peng-Robinson Equation of State “, Fluid Phase Equilibria 191 (2001) 177-188.
[18] Yuwen Zhang and Amir Faghri, “ Numerical Simulation of Condensation on a Capillary Grooved Structure “, Numerical Heat Transfer, Part A, 39: 227-243, 2001.
[19]熱管技術理論實務(HEAT PIPE TECHNOLOGY),依日光 編著。
[20] A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries ”, Los Alamos National Laboratory Report LA-12503-MS, 1993.
[21] A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays ”, Los Alamos National Laboratory Report LA-11560-MS, 1989.
[22] C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys. ,Vol. 14, pp.227, 1974.
[23] W. E. Pracht, J. Comput. Phys.,Vol. 17, pp.132, 1975.
[24] S. V. Patankar, “ Numerical Heat Transfer and Fluid Flow ”, Hemisphere, Washington, D. C., 1980.
[25]ajigo corporation , www.ajigo.com .
[26]美國Kryotech公司, http://www.kryotech.com .
[27] AMD Athlon 超頻網站 http://www.athlonoc.org .
[28] 富海國際企業股份有限公司, http://www.npowertek.com .
[29] Yunus A. , C.Engel “Heat Transfer” ,P366