| 研究生: |
巫俊昌 Wu, Chun-Chang |
|---|---|
| 論文名稱: |
製備微奈米壓印用高分子阻劑及模具應用於可撓式塑膠基板 Preparation of polymeric resists and molds for micro/nano-imprinting lithography on flexible plastic substrates |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 奈米壓印 、高分子阻劑 、塑膠模具 、可撓式塑膠基板 |
| 外文關鍵詞: | nano-imprinting lithography, polymeric resists, plastic molds, flexible plastic substrates |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究的第一部份:製備新型奈米壓印用無溶劑型紫外光光聚合阻劑使用於透明可撓式塑膠基板。阻劑成分為固態PMMA、液態methylmethacrylate(MMA)、methacylic acid(MAA)和光起始劑系統(2-isopropyl thioxanthone (ITX) and ethyl 4-(dimethylamino)benzoate (EDAB))。此無溶劑型光聚合阻劑可於室溫下低壓印壓力0.25 kg/cm2進行壓印,進而從透明基板曝光硬化得到奈米級和微米級轉移圖案,高密度等線寬線距線列,最小解析度為150 nm轉移在可撓式ITO/PET塑膠基板上。無溶劑型光聚合阻劑含有液態單體具有低黏度高流動性,低收縮性來自於以PMMA當做結合劑(binder)。
本論文研究的第二部份是:製備高剛性,可撓曲性且紫外光穿透的聚亞醯胺塑膠模具可用於奈米壓印。經由不同的二胺與二酸酐單體合成三種系統的聚醯胺酸(PAA)與聚亞醯胺(PI),聚醯胺酸或聚亞醯胺溶液藉由鑄模在矽母模上可得到可撓曲且堅韌的塑膠模具。聚亞醯胺塑膠模具的優點為(1)高玻璃轉移溫度(Tg)達到310 oC、(2)高熱穩定性達到500 oC、(3)高彈性模數與(4)紫外光可穿透之含氟聚亞醯胺模具可用於紫外光曝光壓印(UV-NIL)。利用聚亞醯胺模具壓印可得到大面積(4吋)的微米級和奈米級轉移圖案,壓印的結果顯示聚亞醯胺模具可有效地使用於熱壓印(hot embossing NIL)與紫外光曝光壓印(UV-NIL),使用聚亞醯胺塑膠模具取代昂貴的矽母模,避免矽母模的脆裂可降低奈米壓印的成本。
本論文研究的第三部份是:製備無溶劑熱硬化型DGEBA/930與DGEBA/954環氧樹脂用於低壓低溫奈米壓印(NIL)。環氧樹脂在結構、製程條件與最後的材料特性是用等溫動力學來分析,使得奈米壓印有最佳的加工效率,藉由恆溫動力學分析可得DGEBA/930與DGEBA/954環氧樹脂的動力學參數,依此可計算出轉化率。DGEBA/930與DGEBA/954環氧樹脂阻劑經由壓印可得到大面積高密度奈米級和微米級轉移圖案在ITO/PET基板。DGEBA/930環氧樹脂不僅適合於阻劑材料,且可用於塑膠模具,經由矽母模鑄模的DGEBA/930塑膠模仁成功地壓印光阻劑,壓印圖案為奈米線列與奈米點陣之解析度,顯示出DGEBA/930塑膠模仁在奈米壓印應用的潛力。
本論文研究的第四部份是:製備無溶劑熱硬化型環氧樹脂/無機物複合阻劑,使用於低壓適溫壓印製程。DGEBA預聚物、金屬無機前驅物和偶合劑GLYMO經由溶膠-凝膠法,製備環氧樹脂/SiO2和環氧樹脂/TiO2複合阻劑。導入偶合劑GLYMO可強化有機無機物的介面鍵結,改善相容性。TEM分析可看出奈米級SiO2和TiO2均勻分散在環氧樹脂基材中,且沒有產生聚集。環氧樹脂/SiO2複合物相較於環氧樹脂有熱穩定性和玻璃轉換溫度的增加。當10 wt%的無機物添加時,環氧樹脂/SiO2和環氧樹脂/TiO2複合物相較於環氧樹脂對於抗蝕刻能力有4 和3.2倍的增加。利用環氧樹脂/無機物複合阻劑於壓印製程,可得到高密度110到500奈米等線寬線距圖案在可撓曲ITO/PET基板。經由環氧樹脂/無機物複合阻劑壓印出的線路收縮率由4 %降至1.3 %,歸功於無機物的添加。
本論文研究的第五部份是:藉由奈米壓印技術從硝酸銀前驅物製造導電銀線列與點陣,本方法便宜且能達到奈米級導電線路的製作。藉由旋轉塗佈法將硝酸銀前驅鹽水溶液塗佈在聚亞醯胺模具或是壓印阻劑表面。硝酸銀前驅物在乙二醇還原蒸氣下可直接還原成固態銀結構,將轉移圖案做EDX (Energy dispersive X-ray spectroscopy)分析確定導線完全為銀元素。最後將有機可溶的聚亞醯胺模具或阻劑層溶於溶劑裡,平整連續的導電金屬銀線列將轉移至基板上。量測線寬為20μm導電銀線的最低電阻率為8.45 x 10-5 W cm足夠使用於導電元件的使用。
This thesis can be divided into five parts.
First, a novel liquid photo-polymerization resist was prepared for nanoimprint lithography on transparent flexible plastic substrates. The resist is a mixture of poly(methyl methacrylate) (PMMA), methylmethacrylate (MMA), methacylic acid (MAA) and two photo-initiators, (2-isopropyl thioxanthone (ITX) and ethyl 4-(dimethylamino)benzoate (EDAB)). The resist can be imprinted at room temperature with a pressure of 0.25 kg/cm2, and then exposed from the transparent substrate side using a broad band UV lamp to obtain nano- and micro-scale patterns. Replications of high-density line and space patterns with resolution of 150 nm were obtained on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The liquid resist has low viscosity due to the liquid monomers, and low shrinkage due to the addition of PMMA as a binder.
Second, we have developed low-cost, high modulus, flexible, and UV transparent polyimide plastic molds for nanoimprint lithography (NIL). Different structures of poly(amic acids) (PAA) and polyimides (PI) have been synthesized. By casting the PAA or PI solutions on a silicon master, flexible but still rigid plastic molds can be produced. The advantages of the PI molds are: (1) high glass-transition temperatures (Tg) up to 310 oC, (2) high thermal stability over 500 oC, (3) high tensile modulus, and (4) UV transparency for use in UV-NIL. Various micrometer and nanometer scale patterns could be obtained from the PI molds on a large area (4 inch wafer). The imprinting results showed that the PI molds could be faithfully used for both hot embossing NIL and UV-NIL.
Third, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL.
Fourth, the solvent-free thermo-curable epoxy/inorganic hybrid resists were prepared for low-pressure and moderate-temperature imprint lithography. Epoxy/silica and epoxy/titania hybrid resists were synthesized via sol-gel process from a diglycidyl ether of bisphenol A (DGEBA) prepolymer with a metal alkoxide precursor and a coupling agent, 3-glycidyloxypropyltrimethoxysilane (GLYMO). The introduction of the coupling agent results in the reinforced interfacial interaction between epoxy resin and inorganic nanoparticles. Transmission electron microscopy (TEM) analyses showed that the silica or titania particles were well dispersed in the epoxy resin matrix on a nanometer scale without the formation of aggregates. The thermooxidative stability and the glass-transition temperature (Tg) of the epoxy/silica nanocomposite showed improvement compared to the pure epoxy resin. When 10 wt% inorganic nanoparticles were added, the etching resistance of the epoxy/silica and epoxy/titania nanocomposites increased 4 and 3.2 times, respectively, compared to the pure epoxy resin. The epoxy/inorganic hybrid resist can be imprinted to obtain high-density patterns with resolution of 110 to 500 nm on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The shrinkage of the epoxy/silica and epoxy/titania hybrid resists imprinted patterns decreased to 1.5 % and 1.3 %, respectively.
Fifth, we have developed a novel method to fabricate conductive silver tracks and dots directly from silver nitrate solution by nanoimprinting lithography techniques, which is inexpensive and able to be scaled down to the nanometers scale. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. Energy dispersive spectrometric (EDS) analysis results indicate that the silver nitrate has been converted to silver completely. In order to obtain smooth and continuous conductive patterned silver features with high resolution, the silver lines with widths of a few tens of micrometers to nanomerters were patterned by using a spin-coating approach. Using a 14 M silver nitrate solution, continuous silver conductive lines with a resistivity of 8.45 x 10-5 cm has been produced.
1 S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 3114. (1995)
2 S. Y. Chou and P. R. Krauss, Microelectron. Eng. 35, 237. (1997)
3 M. Otto, M. Bender, B. Hadam, B. Spangenberg and H. Kurz, Microelectron. Eng. 53, 233. (2000)
4 M. Otto, M. Bender, B. Hadam, B. Spangenberg and H. Kurz, Microelectron. Eng. 57-58, 361. (2001)
5 Y. Xia and G. M. Whitesides, Chem. Int. 37, 550. (1998)
6 D. Falconnet and G. Csucs, Biomaterials 27, 3044. (2006)
7 S. C. Lin, Sens. Actuators B 99, 174. (2004)
8 T. C. Bailey, B. J. Choi, M. E. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan and C. G. Willson, J. Vac. Sci. Technol. B 18, 3572. (2000)
9 A. Fuchs, M. Lemme, W. Henschel and H. Kurz, J. Vac. Sci. Technol. B 21(6), (2003)
10 T. C. Bailey, S. C. Johnson, D. J. Resnick, S. V. Sreenivasan, J. G. Ekerdt and C. G. Willson, J. Photopolymer Sci. Tech. 15(3), 481. (2002)
11 T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul and G. M. Whitesides, Langmuir 18, 5314. (2002)
12 J. A. Rogers, K. E. Paul, R. J. Jackman and G. M. Whitesides, J. Vac. Sci. Technol. B 26, 59. (1998)
13 K. M. Choi and J. A. Rogers, J. Am. Chem. Soc. 125(14), 4060. (2003)
14 T. C. Bailey, B. J. Smith, B. J. Choi, M. E. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt and C. G. Willson, J. Vac. Sci. Technol. B 19(6), 2806. (2001)
15 N. S. Cameron1, A. Ott, H. Roberge and T. Veres, Mater. Res. Soc. Symp. Proc. 872, J113. (2005)
16 http://www.technologyreview.com/articles/emerging0203.asp
17 H. Schulz, H. C. Scheer and T. Hoffmann, J. Vac. Sci. Technol. B 18, 1861. (2000)
18 http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf
19 http://www.microresist.de/thermoplastics_2005_en.htm
20 http://www.microresist.de/mr_nil6000_en.htm
21 http://www.toyogosei.net/research.html
22 http://www.microresist.de/mri9000e_2005_en.htm
23 N. Yoda and H. J. Hiramoto, Macromol. Sci. Chem 3, 1641. (1984).
24 H. F. Mark, N. M. Bikales, C. G. Overberder and G. Menges, In Encyclopedia of Polymer Science and Engineering, Dekker, M. New York, 364. (1987).
25 M. T. Bogert and R. R. Renshaw, J. Am. Chem. Soc 30, 1135. (1908).
26 林金雀, 化工資訊月刊 13, 58. (1908).
27 金進興, 工業材料 114, 118. (1996).
28 R. A. Meyers, J. Polym. Sci.,Polym Chem. Ed. 2757. (1969)
29 M. K. Ghosh, K. L. Mitta, In Polyimides:Fundamentals and Applications, Dekker, M. New York, 7. (1996)
30 C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards and K. L. Olivier, J. Polym. Sci.,Polym Chem. Ed. 3, 1373. (1965)
31 T. L. Li, S. L. C. Hsu, European Polymer Journal 43, 3368. (2007)
32 Y. J. Kim, T. E. Glass, G. D. Lyle and J. E. McGrath, Macromolecules 26, 1344. (1993)
33 A. K. St. Clair and W. S. Slemp, SAMPE J 21(4), 28. (1985)
34 A. K. St. Clair, T. L. St. Clair and K. I.Shevket, Proceedings of the Division of Polymeric Materials Science and Engineering 51, 62. (1984)
35 G. C. Eastmond, J. Paprotny and R. S. Trwin, Macromolecules 29, 1382. (1996)
36 W. A. Feld, B. Ramalingam and F. W. Harris, J. Polym. Sci.,Polym Chem. Ed. 21, 319. (1983)
37 P. M. Hergenrother, K. A. Watson, Jr. J. G. Smith, J. W. Connell and R. Yokota, Polymer 46, 5077. (2002)
38 W. G. Kim and A. S. Hay, Macromolecules 28, 371. (1993)
39 R. Giesa, U. Keller, P. Eiselt and H. W. Schmidt, J. Polym. Sci.; Part A: Polym. Chem 31, 141. (1993)
40 T. Matsumoto, Macromolecules 32, 4933. (1999)
41 W. Volksen, H. J. Cha, M. I. Sanchez and D. Y. Yoon, React. Funct. Polym 30, 61. (1996)
42 E. Schab-Blacerzak, D. Sek, A. Volozhin, T. Chamenko and B. Jarzabek, Euro. Polym. J 38, 423. (2002)
43 F. W. Harris, S. L. C. Hsu and C. C. Tso, Polymer Preprint 31(1), 342. (1990)
44 J. L. Hedrick, I. Yilgor, G. L. Wilkes and J. E. McGrath, Polymer Bulletin 33, 303. (1985)
45 J. B. Enns and J. K. Gillham, J. Appl. Polym. Sci. 38, 3567. (1983)
46 J. K. Gillham and J.V. Dawkins Eds, Appl. Sci. Publ., London, p.359, (1983)
47 垣內弘, 環氧樹脂應用實務, 復漢出版社 (1996)
48 H. Lee and K. Neville, Handbook Of Epoxy Resins (1996)
49 B. A. Rozenberg, Advances in polymer science: Epoxy resins and composites Ⅱ 75, 113. (1985)
50 L. Shschter, J. Wynstra and R. P. Kurjy, Ind. Eng. Chem. 48, 94. (1956)
51 A. Usuki, M. Kawasumi and Y. Kojima, J. Mater. Res. 7, 856. (1991)
52 P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: polymer. Chem. 33, 1047. (1995)
53 S. D. Burnside and E. P. Giannelis, Chem. Mater. 7, 1597. (1995)
54 H. Ishida, S. Campbell and J. Blackwell, Chem. Mater. 12, 1260. (2000)
55 廖建勛, 工業材料125, 108. (1997)
56 D. M. Delozier, R. A. Orwoll and J. F. Cahoon, Polymer 43, 813. (2002)
57 Z. M. Liang, J. Yin and H. J. Xu, Polyme 44, 1391. (2003)
58 J. H. Chang, M. P. Kwang and D. Cho, Polym. Eng. Sci. 41, 1514. (2001)
59 S. H. Hsiao, G. S. Liou and L. M. Chang, J. Appl. Polym. Sci. 80, 2067. (2001)
60 A. Gu, S. W. Kuo and F. C. Chang, J. Appl. Polym. Sci. 79, 1902. (2001)
61 H. Dislich, Glastech. Ber. 44, 1. (1971)
62 王鈴雅, 成功大學化學工程學系碩士論文 (2002).
63 周俊諺, 成功大學化學系碩士論文 (2004).
64 I. Matsuyama, S. Satoh, M. Katsumoto and K. Susa, J. Non. Cryst. Solids 135, 22. (1991)
65 A. M. Siouffi, J. Chromatogr. A 1000, 801. (2003)
66 陳暉, 陳姿秀, 化工技術 8, 166. (2000)
67 莊萬發, 超微粒子理論應用, 復漢出版社, 台南 (1995)
68 蘇品書, 超微粒子材料技術, 復漢出版社, 台南 (1989)
69 M. T. Reetz and S. A. Quaiser, Angew. Chem. Int. Ed. Engl. 34(20), 2240. (1995)
70 S. Remita, M. Mostafavi, M. O. Delcourt and J. Belloni, Journal de Chimie Physique et de Physico-Chimie Biologique 93(10), 1828. (1996)
71 N. Toshima, T. Yonezawa and S. Isoda, Journal of Colloid and Interface Science 283(1), 64. (2005)
72 W. Ren, K. Y. Siu, H. S. Suzuki and G. Ramamurthy, Computer Communications 21(17), 1610. (1998)
73 B. Vratzov, A. Fuchs, M. Lemme, W. Henschel and H. Kurz, J. Vac. Sci. Technol. B. 21(6), (2003)
74 M. Sagnes, L. Malaquin, F. Carcenac, C. Vieu and C. Fournier, Microelectron. Eng. 61– 62, 429. (2002)
75 F. A. Houle, A. Fornof, R. Sooriyakumaran, H. Truong, D. C. Miller, M. I. Sanchez, B. Davis, T. Magbitang, R. D. Allen., M. W. Hart and G. Dubois, Proc. of SPIE 6519, 65191C-3. (2007)
76 W. C. Liao, S. L. C. Hsu, S. Y. Chu and P. C. Kau, Microelectron. Eng. 77, 250. (2005)
77 D. L. Kurdikar and N. A. Peppas, Polymer 36, 2249. (1995)
78 R. Valazquez, I. Ceja, J. Guzman and V. M. Castano, J. Appl. Polym. Sci. 91, 1254. (2004)
79 M. Bender, U. Plachetka, J. Ran, A. Fuchs, B. Vratzov, H. Kurz, T. Glinsner and F. Lindner, J. Vac. Sci. Technol. B 22, 3229. (2004)
80 J. Perumal, D. P. Kim and J. J. Lee, J. Nanosci. Nanotechnol. 8(10), 5341. (2008)
81 Y. S. Kim, H. H. Lee and P. T. Hammond, Nanotechnology 14, 1140. (2003)
82 D. Suh, S. J. Choi and H. H. Lee, Adv. Mater. 17, 1554. (2005)
83 S. J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim and H. H. Lee, J. Am. Chem. Soc. 126, 7744. (2004)
84 D. G. Choi, J. H. Jeong, Y. S. Sim, E. S. Lee, W. S. Kim and B. S. Bae, Langmuir 21, 9390. (2005)
85 W. S. Kim, D. G. Choi and B. S. Bae, Nanotechnology 17, 3319. (2006)
86 C. Pina-Hernandez, P. F. Fu and L. J. Guo, J. Vac. Sci. Technol. B 26, 2426. (2008)
87 D. Y. Khang, H. Kang, T. I. Kim and H. H. Lee, Nano Lett. 4, 633. (2004)
88 D. Y. Khang and H. H. Lee, Langmuir 20, 2445. (2004)
89 B. C. Ho, J. H. Chen, W. C. Perng, C. L. Lin and L. M. Chen, J. Appl. Polym. Sci. 67, 1313. (1998)
90 J. De Abajo and J. de la Campa, Progress in Polyimide Chemistry I, 23. (1999)
91 D. H. Lee, S. Y. Koo, H. S. Lee, W. S. Kim, K. E. Min, L. S. Park, K. H. Seo, I. K. Kang and H. J. Choi, J. Appl. Polym. Sci. 85, 38. (2002)
92 S. W. Chuang and S. L. C. Hsu, J. Polym. Sci. Pol. Chem. 44, 4508. (2006)
93 J. Macan, I. Brnardic, M. Ivankovic and H. J. Mencer, J. Therm. Anal. Calorim. 81, 369. (2005)
94 W. M. Chen, P. Li, Y. H. Yu and X. P. Yang, J. Appl. Polym. Sci. 107, 1493. (2008)
95 C. S. Wang and C. H. Lin, Polymer 41, 8579. (2000)
96 M. Ali and A. Hammami, Polym. Compos. 26, 593. (2005)
97 M. Ivankovic, I. Brnardic, H. Ivankovic, H. J. Mencer, J. Appl. Polym. Sci. 99, 550. (2006)
98 H. Seung, W. G. Kim, H.G. Yoon and T. J. Moon, J. Polym. Sci. Pol. Chem. 36, 773. (1998)
99 C. S. Wang and C. H. Lin, J. Appl. Polym. Sci. 74, 1635. (1999)
100 H. Schmitt, L. Frey, H. Ryssel, M. Rommel and C. Lehrer, J. Vac. Sci. Technol. B 25, 785. (2007)
101 J. Macan, I. Brnardic, M. Ivankovic and H. J. Mencer, Journal of Thermal Analysis and Calorimetry 81, 369. (2005)
102 C. S. Wang and C. H. Lin, J. Appl. Polym. Sci. 74, 1635. (1999)
103 F. A. Houle, E. Guyer, D. C. Miller and R. Dauskardt, J. Vac. Sci. Technol. B 25(4), 1179. (2007)
104 C. Schuster, M. Kubenz, F. Reuther and M. Fink, G. Gruetzner, Proc. SPIE 6517, 65172B. (2007)
105 A. Sekiguchi, Y. Kono, S. Mori, N. Honda and Y. Hirai, Proc. SPIE 6151, 61512H. (2006)
106 K. E.Gonsalves, L. Merhari, H. Wu and Y. Hu, Adv. Mater. 13, 703. (2001)
107 S. R. Lu, H. L. Zhang, C. X. Zhao and X. Y. Wang, Polymer 46, 10484. (2005)
108 G. H. Hsiue, Y. L. Liu and H. H. Liao, J. Polym. Sci. Pol. Chem. 39, 986. (2001)
109 C. Qi, H. Gao, F. Y. Yan, W. M. Liu, G. Q. Bao, X. D. Sun, J. M. Chen and X. M. Zheng, J. Appl. Polym. Sci. 97, 38. (2005)
110 W. H. Weng, H. Chen, S. P. Tsai and J. C. Wu, J. Appl. Polym. Sci. 91, 532. (2004)
111 T. Sawada and S. Ando, Chem. Mater. 10, 3368. (1998)
112 P. C. Chiang and W. T. Whang, Polymer 44, 2249. (2003)
113 J. Macan, H. Ivankovic, M. Ivankovic and H. J. Mencer, J. Appl. Polym. Sci. 92, 498. (2004)
114 R. L. Burns, S. C. Johnson, G. M. Schmid, E. K. Kim, M. D. Dickey, J. Meiring, S. D. Burns, N. A. Stacey and C. Grant Willson Proc. SPIE 5374, 348. (2004)
115 K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C. M. Sotomayor-Torres, H. Schulz and H. C. Scheer, Microelectron. Eng. 67-68, 266. (2003)
116 M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E.-B. Kley and G. Grutzner, Microelectron. Eng. 84, 984. (2007)
117 P. Nagpal, N. C. Lindquist, S. H. Oh and D. J. Norris, Science 325, 594. (2009)
118 B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. Grant Willson and G. M. Whitesides, Chem. Rev. 105, 1171. (2005)
119 K. W. Oh, B. H. Lee, J. K. Hwang, H. Lee, K. H. Lee, S. G. Im and M. M. Sung, Small 5, 558. (2009)
120 M. K. Kwak, T. I. Kim, P. Kim, H. H. Lee and K. Y. Suh, Small 8, 928. (2009)
121 S. M. Kim, J. S. Kim, J. S. Lim, M. S. Choi, S. N. Kang, S. K. Lee and H. K. Kim, Appl. Phys. Lett. 91, 143117. (2007)
122 H. H. Lee, K. S. Chou and K. C. Huang, Nanotechnology 16, 2436. (2005)
123 Z. C. Liu, Y. Su and K. Varahramyan, Thin Solid Films 478, 275. (2005)
124 D. Desmond, B. Lane, J. Alderman, J. D. Glennon, D. Diamond and D. W. M. Arrigan, Sens. Actuator B-Chem. 44, 389. (1997)
125 W. W. Yin, D. H. Lee, J. S. Choi, C. H. Park and S. M. Cho, Korean J. Chem. Eng. 25(6), 1358. (2008)
126 S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 3114. (1995)
127 L. J. Guo, J. Phys. D: Appl. Phys. 37, R123. (2004)
128 L. J. Guo, Adv. Mater. 19, 495. (2007)
129 H. Schift, J. Vac. Sci. Technol. B 26, 458. (2008)
130 H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin and T. C. Chu, Microelectron. Eng. 83, 893. (2006)
131 H. Yoshihiko, U. Toshihiko, K. Tomohiro and M. Takashi, Proc. SPIE 5220, 74. (2003)
132 S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe and M. J. Jean Frechet, Nano Lett. 7(7), 1869. (2007)
133 Y. Kuwahara, M. Morita, K. Yoshimori, K. Kumamaru, H. Endoh, T. Iwanaga, T. Nagami, T. Sawada, H. Shosenji, M. Sasaki and M. Goto, Jpn. J. Appl. Phys. 47(6), 5171. (2008)
134 J. T. Wu, S. L. C. Hsu, M. H. Tsai and W. S. Hwang, Thin Solid Films 517, 5913. (2009)
135 C. E. Hendriks, P. J. Smith, J. Perelaer, A. M. J. Berg and U. S. Schubert, Adv. Funct. Mater. 18, 1031. (2008)
136 J. H. Choi, S. W. Lee, J. H. Jeong, D. G. Choi and E. S. Lee, Microelectron. Eng. 86, 622. (2009)
校內:2020-12-31公開