簡易檢索 / 詳目顯示

研究生: 李瑋庭
Li, Wei-Ting
論文名稱: 創傷弧菌中直接受到毒力調控子Lrp調控之基因
Identification of genes directly regulated by Lrp, a virulence regulator, in Vibrio vulnificus
指導教授: 何漣漪
Hor, Lien-I
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 創傷弧菌白胺酸轉錄調節子GeF-seqLrp結合位之預測EMSA
外文關鍵詞: Vibrio vulnificus, Lrp, GeF-seq, Lrp-binding site prediction, EMSA
相關次數: 點閱:128下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 創傷弧菌屬於革蘭氏陰性病原菌,可藉由傷口或食入未煮熟之海鮮而感染人類,會在帶有慢性肝病等潛在性疾病的病人造成嚴重的敗血症和壞死性筋膜炎。我們實驗室先前發現,創傷弧菌中的一個廣泛調控子Lrp能調控此菌對小鼠之毒力,且在Δlrp突變株中發現許多參與在代謝作用、細菌趨化功能及攝取鐵相關之基因的mRNA表現量均顯著下降。為了解Lrp調控細菌毒力的機制,我嘗試找出被Lrp直接調控的目標基因。首先,我分別製備了野生型Lrp及在DNA結合部位發生點突變的Lrp*突變蛋白質之多株抗體,且純化了Lrp-his6重組蛋白質以用在之後的電泳遷移實驗(EMSA)。接著,由EMSA及qRT-PCR的實驗結果顯示,創傷弧菌YJ016菌株中Lrp能直接與tonB3 (VV0250-VV0244)及cadBA (VV2382-VV2383)操縱組之啟動子結合,並活化它們的基因表現,此與先前在其它創傷弧菌菌株中所發現的情形一致。為了找出Lrp在此菌中能直接結合之基因啟動子,我進行了Genome footprinting (GeF)-seq實驗,並使用實驗室之前比較野生株及Δlrp突變株之轉錄體所得的數據,以及創傷弧菌基因體中Lrp所結合之啟動子的預測結果,進一步比對並找出重疊的基因。我由這些基因中選出40個與毒力相關或轉錄調控子之基因,並藉由EMSA實驗確定其中除lrp之外,另有7個包含參與細菌趨化性、攝鐵能力、莢膜合成、胺基酸代謝及轉錄調控作用之基因的啟動子能被Lrp專一性結合,且此7個基因於小鼠血清中培養時,其mRNA表現量在Δlrp突變株中皆較野生株明顯下降,推測可能因此造成Δlrp突變株對小鼠之毒力降低。此外,藉由線上生物資訊軟體之分析,我們在上述10個能被Lrp結合的啟動子中發現一個共有的14 bp長,與大腸桿菌Lrp結合之共同序列相似的DNA序列,推測其為創傷弧菌中Lrp所結合之共同序列。接著,我使用創傷弧菌本身的lacZ作為lrp之啟動子的報導基因,探討Lrp對自身基因之調控,結果發現Lrp的總量隨時間遞增,而lacZ和lrp之mRNA表現量則隨時間遞減,由此推測Lrp對自身基因的調控扮演抑制子的角色。另外,我也發現Lrp與Lrp*對於lrp、VV2382 (cadB)、VV0337及VVA1247的調控能力相差不多,但Lrp*對VV0250 (tonB3操縱組之第一個基因)的調控有些微減弱;透過抗原決定位的預測,也發現Lrp上的點突變可能造成蛋白質結構在N端有些微變化,導致anti-Lrp抗體對Lrp及Lrp*之偵測效果不一樣,因此,我們推測此點突變可能會影響Lrp與DNA之結合,進而影響其調控部分基因之能力。未來可進一步探討本研究中所找到的7個直接受到Lrp調控的基因對細菌之毒力是否扮演重要角色。

    Vibrio vulnificus, a gram-negative bacterial pathogen, can infect human via wounds or contaminated seafood and cause necrotizing fasciitis and fulminant septicemia in persons with underlying conditions, such as chronic liver diseases. Our laboratory has previously found that the leucine-responsive regulatory protein (Lrp), a global regulator, in a clinical strain YJ016 is involved in the regulation of virulence in mice. The mRNA levels of many genes associated with metabolism, chemotaxis and iron acquisition were significantly downregulated in the Δlrp mutant. To understand the mechanism of virulence regulation by Lrp, I tried to identify the genes directly regulated by Lrp. First, I prepared the polyclonal antibodies against wild-type Lrp and the Lrp* mutant with point mutation in the DNA-binding domain, and purified the Lrp-his6 recombinant protein to be used in electrophoretic mobility shift assay (EMSA). By EMSA and qRT-PCR analysis, I confirmed that Lrp could bind to the promoters of tonB3 (VV0250-VV0244) and cadBA (VV2382-VV2383) operons to activate their transcription in V. vulnificus YJ016, as had been previously demonstrated in other strains. To identify the promoters directly bound by Lrp in V. vulnificus, I performed genome footprinting by high-throughput sequencing (GeF-seq) and bioinformatic prediction with the consensus sequences of Lrp in E. coli. By comparing between the result of bioinformatic prediction and that of GeF-seq or transcriptome comparison between the wild-type strain and Δlrp mutant conducted previously, I found a number of commonly identified genes. Among them, I selected 40 that were virulence-related or encoding transcriptional regulators. By EMSA, I demonstrated that, other than lrp, 7 genes, including those associated with chemotaxis, iron acquisition, capsule synthesis, amino acid metabolism and transcriptional regulation, were specifically bound by Lrp at the promoter region. The mRNA levels of these 7 genes in the Δlrp mutant were significantly lower than those in the wild-type strain when the bacteria were incubated in mouse serum, and this may partly explain why the virulence of the Δlrp mutant were reduced. The roles of these genes in bacterial virulence are worthy of further investigation. By bioinformatic analysis, we identified a 14 bp DNA sequence, which was similar to the Lrp-binding consensus sequence in E. coli, in all of the ten promoters shown to be bound by Lrp, suggesting that it may be an Lrp-binding consensus sequence in V. vulnificus. I then explored how Lrp regulates the expression of its own gene by using lacZ as a reporter of the lrp promoter. It was shown that the mRNA levels of both lacZ and lrp decreased while the amount of Lrp increased with time, suggesting that Lrp might be a repressor for its own promoter. I also found that the mRNA levels of lrp, VV2382 (cadB), VV0337 and VVA1247 in the presence of Lrp* were similar to those in the presence of Lrp, but, that of VV0250 was lower in the presence of Lrp*. Computational prediction of the epitopes of Lrp and Lrp* suggested that the mutation in Lrp* may slightly change the structure of Lrp at the N-terminus, which could lead to weaker signal of Lrp*, compared to Lrp, upon detection by anti-Lrp. We suspect that the mutation could result in weaker interaction between Lrp* and DNA and loss of regulation ability for some, but not all, genes.

    中文摘要........... I Extended Abstract ........... II 誌謝.... IX 目錄.............. XI 表目錄............ XIV 圖目錄............ XV 符號及縮寫............. XVII 緒論.............. 1 材料與方法............. 8 I. 實驗菌株、質體及菌種培養與保存...... 8 1. 實驗菌株與質體......... 8 2. 實驗菌種的培養與保存........ 8 II. 實驗細胞株與實驗動物......... 8 1. 細胞株培養........... 8 2. 細胞株保存方法......... 9 3. 實驗動物............ 9 III. 核酸及分子生物學技術......... 9 1. 商業化套組純化質體DNA....... 9 2. 商業化套組萃取創傷弧菌染色體DNA...... 10 3. 聚合酶連鎖反應(polymerase chain reaction, PCR).... 11 4. 核酸引子之製備......... 11 5. DNA電泳分析.......... 11 6. 商業化套組回收DNA片段....... 12 7. 限制酶切割DNA.......... 12 8. DNA片段去磷酸化反應......... 12 9. DNA黏合反應.......... 13 10. 質體轉移方法........... 13 11. 商業化套組萃取細菌RNA....... 14 12. 反轉錄作用(reverse transcription) ....... 15 13. 即時偵測聚合酶連鎖反應 (real-time PCR/ qRT-PCR) ... 16 IV. 蛋白質分析.......... 17 1. 商業化套組萃取全細胞蛋白質....... 17 2. 蛋白質樣品之定量......... 17 3. 蛋白質電泳分析......... 17 V. Lrp及Lrp*抗體製備及蛋白質純化....... 19 1. 製備anti-Lrp及anti-Lrp之多株抗體....... 19 2. Lrp及Lrp*蛋白質之純化........ 21 VI. 尋找Lrp直接調控之基因........ 22 1. 修改式GeF-seq執行及結果分析....... 22 2. Lrp結合位之預測......... 24 VII. 電泳遷移分析(Electrophoretic mobility shift assay, EMSA)... 25 1. 簡易型電泳遷移(simple EMSA) ........ 25 2. 競爭型電泳遷移(competition EMSA) ...... 25 VIII. 細菌特性分析 ......... 26 1. 生長曲線之測定......... 26 2. 於軟瓊脂培養盤上之移動能力(Migration on soft agar)... 27 3. 細胞毒性分析(Cytotoxicity assay) ...... 27 IX. 創傷弧菌突變株之製備......... 28 1. 構築質體pMO15(pCVD442-Plrp-lacZ’)..... 28 2. 以對偶基因置換法(allelic exchange)構築創傷弧菌之突變株.. 28 X. 創傷弧菌Lrp結合之共同DNA序列(consensus sequence)之分析.. 29 XI. 統計分析方法.......... 29 結果.............. 30 I. Lrp及Lrp*多株抗體和蛋白質之製備...... 30 1. 多株抗體製備..... 30 2. 蛋白質之純化........ 30 II. 在創傷弧菌中尋找能被Lrp直接調控之基因..... 31 1. 確認純化之Lrp結合啟動子之能力.... 31 1-1. 簡易型電泳遷移分析(Simple EMSA) ..... 31 1-2. 競爭型電泳遷移分析(Competition EMSA).... 31 2. 以GeF-seq實驗找出創傷弧菌基因體中其啟動子被Lrp所結合之基因... 32 2-1. KA023之特性分析......... 32 2-2. 執行GeF-seq實驗........ 34 3. 創傷弧菌Lrp結合位之預測....... 35 4. 對照GeF-seq、Lrp結合位預測、轉錄體比較之實驗結果... 35 4-1. GeF-seq與Lrp結合位預測之重疊基因..... 35 4-2. Lrp結合位預測及轉錄體比較實驗結果之重疊基因... 36 4-3.受Lrp直接調控之基因在野生株和Δlrp突變株中之mRNA表現 量........... 37 4-4. 創傷弧菌Lrp結合DNA共同序列之分析.... 37 III. 點突變對Lrp功能之影響 ........ 38 1. 使用anti-Lrp和anti-Lrp*抗體偵測Lrp蛋白質.. 38 1-1. 偵測野生株和點突變株之Lrp蛋白質...... 38 1-2. 偵測純化之Lrp-his6及Lrp*-his6蛋白質..... 38 1-3. Lrp-his6和Lrp*-his6的抗原決定位之預測.... 39 2. 野生株、lrp*突變株和Δlrp突變株之lrp、VV0250、VV2382、VV0337和VVA1247 mRNA的表現量........ 39 3. 野生株、lrp*突變株和Δlrp突變株中lrp啟動子活性之測試... 40 3-1. 野生株和lrp*突變株之Lrp表現量...... 40 3-2. 野生株、lrp*突變株和Δlrp突變株之lacZ和lrp的mRNA表現量.... 40 討論.............. 41 參考文獻............ 48 圖表集............ 54 附錄.............. 87 自述.............. 88

    1. Kaspar, C.W. and M.L. Tamplin, Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993. 59(8): p. 2425-9.
    2. Blake, P.A., et al., Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med, 1979. 300(1): p. 1-5.
    3. Strom, M.S. and R.N. Paranjpye, Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000. 2(2): p. 177-88.
    4. Hollis, D.G., et al., Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol, 1976. 3(4): p. 425-31.
    5. Amaro, C., et al., Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Curr Microbiol, 1992. 25(2): p. 99-104.
    6. Tison, D.L., et al., Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl Environ Microbiol, 1982. 44(3): p. 640-6.
    7. Tani, T.H., et al., Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13471-6.
    8. Amaro, C. and E.G. Biosca, Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol, 1996. 62(4): p. 1454-7.
    9. Amaro, C., et al., Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol, 1999. 65(3): p. 1352-5.
    10. Efimov, V., et al., Insight into the evolution of Vibrio vulnificus biotype 3's genome. Front Microbiol, 2013. 4: p. 393.
    11. Bisharat, N., et al., Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet, 1999. 354(9188): p. 1421-4.
    12. Bisharat, N., et al., Hybrid Vibrio vulnificus. Emerg Infect Dis, 2005. 11(1): p. 30-5.
    13. Fang, F.C., Use of tetracycline for treatment of Vibrio vulnificus infections. Clin Infect Dis, 1992. 15(6): p. 1071-2.
    14. Chuang, Y.C., et al., Minocycline and cefotaxime in the treatment of experimental murine Vibrio vulnificus infection. Antimicrob Agents Chemother, 1998. 42(6): p. 1319-22.
    15. Chuang, Y.C., et al., In vitro synergism between cefotaxime and minocycline against Vibrio vulnificus. Antimicrob Agents Chemother, 1997. 41(10): p. 2214-7.
    16. Bross, M.H., et al., Vibrio vulnificus infection: diagnosis and treatment. Am Fam Physician, 2007. 76(4): p. 539-44.
    17. Tsao, C.H., et al., Seasonality, clinical types and prognostic factors of Vibrio vulnificus infection. J Infect Dev Ctries, 2013. 7(7): p. 533-40.
    18. Jones, M.K. and J.D. Oliver, Vibrio vulnificus: Disease and Pathogenesis. Infect Immun, 2009. 77(5): p. 1723-33.
    19. Halow, K.D., R.C. Harner, and L.J. Fontenelle, Primary skin infections secondary to Vibrio vulnificus: the role of operative intervention. J Am Coll Surg, 1996. 183(4): p. 329-34.
    20. Kothary, M.H. and A.S. Kreger, Purification and characterization of an elastolytic protease of Vibrio vulnificus. J Gen Microbiol, 1987. 133(7): p. 1783-91.
    21. Kim, Y.R., et al., Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol, 2008. 10(4): p. 848-62.
    22. Hlady, W.G. and K.C. Klontz, The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis, 1996. 173(5): p. 1176-83.
    23. Songer, J.G., Bacterial phospholipases and their role in virulence. Trends Microbiol, 1997. 5(4): p. 156-61.
    24. Linkous, D.A. and J.D. Oliver, Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett, 1999. 174(2): p. 207-14.
    25. Hilton, T., et al., Capsular Polysaccharide Phase Variation in Vibrio vulnificus. Appl Environ Microbiol, 2006. 72(11): p. 6986-93.
    26. McPherson, V.L., et al., Physiological effects of the lipopolysaccharide of Vibrio vulnificus on mice and rats. Microbios, 1991. 67(272-273): p. 141-9.
    27. Paranjpye, R.N. and M.S. Strom, A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun, 2005. 73(3): p. 1411-22.
    28. Paranjpye, R.N., et al., The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun, 1998. 66(12): p. 5659-68.
    29. Lee, J.H., et al., Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun, 2004. 72(8): p. 4905-10.
    30. Ran Kim, Y. and J. Haeng Rhee, Flagellar basal body flg operon as a virulence determinant of Vibrio vulnificus. Biochem Biophys Res Commun, 2003. 304(2): p. 405-10.
    31. Wright, A.C., L.M. Simpson, and J.D. Oliver, Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun, 1981. 34(2): p. 503-7.
    32. Simpson, L.M. and J.D. Oliver, Siderophore production by Vibrio vulnificus. Infect Immun, 1983. 41(2): p. 644-9.
    33. Tan, W., et al., Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore. Front Microbiol, 2014. 5: p. 1.
    34. Kim, I.H., et al., Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. J Microbiol Biotechnol, 2008. 18(1): p. 35-42.
    35. Litwin, C.M., T.W. Rayback, and J. Skinner, Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun, 1996. 64(7): p. 2834-8.
    36. Webster, A.C. and C.M. Litwin, Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect Immun, 2000. 68(2): p. 526-34.
    37. Okujo, N., et al., Involvement of vulnibactin and exocellular protease in utilization of transferrin- and lactoferrin-bound iron by Vibrio vulnificus. Microbiol Immunol, 1996. 40(8): p. 595-8.
    38. Miyoshi, N., et al., Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol, 1987. 31(1): p. 13-25.
    39. Pal, S., et al., Use of monoclonal antibodies to identify phospholipase C as the enterotoxic factor of the bifunctional hemolysin-phospholipase C molecule of Vibrio cholerae O139. Infect Immun, 1998. 66(8): p. 3974-7.
    40. Fan, J.J., et al., Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun, 2001. 69(9): p. 5943-8.
    41. Park, J.W., et al., Pulmonary damage by Vibrio vulnificus cytolysin. Infect Immun, 1996. 64(7): p. 2873-6.
    42. Shao, C.P. and L.I. Hor, Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun, 2000. 68(6): p. 3569-73.
    43. Lee, N.Y., Nucleotide sequencing of phospholipase gene in Vibrio vulnificus and isolation and characterization of mutants deficient in phospholipase. 2000, National Chang Kong University: Tainan, Taiwan. p. 71.
    44. Shao, C.P., Regulation of Vibrio vulnificus metalloprotease (Vvp) expression and role of Vvp in pathogenesis. 1977, National Chang Kong University: Tainan, Taiwan.
    45. Bassinet, L., et al., Bordetella pertussis Adenylate Cyclase-Hemolysin Induces Interleukin-6 Secretion by Human Tracheal Epithelial Cells. Infect Immun, 2004. 72(9): p. 5530-3.
    46. Menestrina, G., et al., Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology, 1994. 87(1-3): p. 249-67.
    47. Lin, W., et al., Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A, 1999. 96(3): p. 1071-6.
    48. Lo, H.R., et al., RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis, 2011. 203(12): p. 1866-74.
    49. Hung, F.R., Role of leucine-responsive regulatory protein, Lrp, in pathogenesis of Vibrio vulnificus. 2014, National Chang Kong University: Tainan, Taiwan. p. 74.
    50. Ho, Y.C., Identification of leucine-responsive regulatory protein, Lrp, as an important virulence regulator in Vibrio vulnificus. 2014, National Chang Kong University: Tainan, Taiwan. p. 91.
    51. Cordone, A., et al., Direct and indirect control of Lrp on LEE pathogenicity genes of Citrobacter rodentium. FEMS Microbiol Lett, 2011. 325(1): p. 64-70.
    52. Brinkman, A.B., et al., The Lrp family of transcriptional regulators. Mol Microbiol, 2003. 48(2): p. 287-94.
    53. Chen, S., M.H. Rosner, and J.M. Calvo, Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. J Mol Biol, 2001. 312(4): p. 625-35.
    54. Chen, S., et al., Modulation of Lrp action in Escherichia coli by leucine: effects on non-specific binding of Lrp to DNA. J Mol Biol, 2001. 314(5): p. 1067-75.
    55. Calvo, J.M. and R.G. Matthews, The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiological Reviews, 1994. 58(3): p. 466-490.
    56. Baek, C.H., et al., Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol, 2009. 191(4): p. 1278-92.
    57. Nakanishi, N., et al., Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology, 2009. 155(Pt 2): p. 521-30.
    58. Weng, C.H., Identification of the target genes of Lrp, a global regulator involved in the virulence of Vibrio vulnificus in mice. 2016, National Chang Kong University: Tainan, Taiwan. p. 65.
    59. Alice, A.F. and J.H. Crosa, The TonB3 system in the human pathogen Vibrio vulnificus is under the control of the global regulators Lrp and cyclic AMP receptor protein. J Bacteriol, 2012. 194(8): p. 1897-911.
    60. Rhee, J.E., K.S. Kim, and S.H. Choi, Activation of the Vibrio vulnificus cadBA Operon by Leucine-responsive regulatory protein is mediated by CadC. J Microbiol Biotechnol, 2008. 18(11): p. 1755-61.
    61. Chumsakul, O., et al., High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq. DNA Res, 2013. 20(4): p. 325-38.
    62. Belval, L., et al., A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express. Protein Expr Purif, 2015. 109: p. 29-34.
    63. Cui, Y., et al., A consensus sequence for binding of Lrp to DNA. J Bacteriol, 1995. 177(17): p. 4872-80.
    64. Cui, Y., et al., The leucine-responsive regulatory protein (Lrp) from Escherichia coli. Stoichiometry and minimal requirements for binding to DNA. J Biol Chem, 1996. 271(12): p. 6611-7.
    65. Yokoyama, K., et al., Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure, 2007. 15(12): p. 1542-54.
    66. Schug, J., Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics, 2008. Chapter 2: p. Unit 2.6.
    67. Bailey, T.L., et al., MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-8.
    68. Yokoyama, K., et al., Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev, 2006. 30(1): p. 89-108.
    69. Furey, T.S., ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet, 2012. 13(12): p. 840-52.
    70. Cho, B.K., et al., Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci U S A, 2008. 105(49): p. 19462-7.
    71. Bogard, R.W., B.W. Davies, and J.J. Mekalanos, MetR-regulated Vibrio cholerae metabolism is required for virulence. MBio, 2012. 3(5).
    72. Armitage, J.P., Bacterial tactic responses. Adv Microb Physiol, 1999. 41: p. 229-89.
    73. Dreux, N., et al., Ribonucleotide reductase NrdR as a novel regulator for motility and chemotaxis during adherent-invasive Escherichia coli infection. 2015. 83(4): p. 1305-17.
    74. Ma, Z., et al., GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol, 2003. 49(5): p. 1309-20.
    75. Fei, Y., Role of a small RNA, VrsA, in regulation of Vibrio vulnificus virulence. 2016, National Chang Kong University: Tainan, Taiwan.
    76. Hanahan, D., Studies on transformation of Escherichia coli with plasmids. J Mol Biol, 1983. 166(4): p. 557-80.
    77. Yanisch-Perron, C., J. Vieira, and J. Messing, Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 1985. 33(1): p. 103-19.
    78. Philippe, N., et al., Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid, 2004. 51(3): p. 246-55.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE