簡易檢索 / 詳目顯示

研究生: 李柏毅
Lee, Po-I
論文名稱: 以聚茀高分子共聚物為主之高分子白光及磷光發光二極體材料
Fluorescent and phosphorescent polymeric white-light emitting diodes based on polyfluorene copolymers
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 172
中文關鍵詞: 磷光白光聚茀
外文關鍵詞: white light, phosphorescent, polyfluorene
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要包含三個部分:
    第一部分:利用末端接枝quinoline或pyridine的polydioctylfluorenes與4,4'-dimethyl-2,2'-bipyridyl (tricarbonyl)rhenium(I) chloride反應後,可得到電激發磷光的高分子材料。經由紅外線光譜與光激發光光譜的分析,可以證明我們有將錸錯合物導入高分子鏈上,而能量便可藉由三重態能階的平衡來達到傳輸的效果。由電激發光光譜中可以發現,高分子材料同時具有polydioctylfluorene與錸錯合物的激發貢獻,整體發光是屬於藍白光。
    第二部分:我們嘗試使用一種新的方式來達到單一螢光高分子系統發白光的效果;利用末端接枝把染料N-phenyl-1,8-naphthalimide(NTI)導入聚茀高分子共聚物[poly(dioctylfluorene-co-benzothiadiazole)]鏈上。經由調整三個單體的莫耳分率,在元件結構為:indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/emission layer/Ca/Ag的情況下,電激發光光譜可以達到發白光的效果。其最大亮度為251 cd/m2,電流密度是400 A/m2,Commission Internationale de l’Eclairage (CIE)座標為(0.31, 0.39)。高分子共聚物的電激發光光譜在不同電壓下,都具有不錯的色彩穩定性。
    第三部分:藉由dioctylfluorene單體與銥錯合物共聚合,再以末端接枝方式導入染料(NTI),本研究可得到單一磷光高分子發出白光的效果。高分子共聚物都具備不錯的熱穩定性,其5%熱重損失介於380~413°C,玻璃轉移溫度則為75~137°C。經由調整三個單體的莫耳分率,在元件結構為:indium tin oxide / poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/ polyvinylcarbazole (PVK)/emission layer/Ca/Ag的情況下,我們可以得到發白光的元件。其最大亮度為300 cd/m2,電流密度是2900 A/m2,Commission Internationale de l’Eclairage (CIE)座標為(0.33, 0.34)。

    The dissertation is divided into three parts.
    Part 1: Novel electrophosphorescent polymers were prepared from quinoline and pyridine end-capped polyfluorenes reacted with 4,4'-dimethyl-2,2'-bipyridyl (tricarbonyl)rhenium(I) chloride. Fourier transform infrared (FT-IR) and photoluminescence (PL) spectroscopy confirmed that the rhenium complex was successfully incorporated into the polymer backbones. The energy transfer can be reached by balanced triplet energy state. The emission contributions of polyfluorene and the organic complex were found from the electroluminescence (EL) spectra.
    Part 2: New polymer white-light-emitting diodes from single polymer systems have been developed. The polymer systems were based on poly(fluorene-co-benzothiadiazole) backbones end-capped with a dye(N-phenyl- 1,8-naphthalimide). By changing the molar ratio of these three units, the electroluminescence (EL) spectra can be adjusted to white-light emission with a structure of indium tin oxide/ poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 251 cd/m2 at a current density of 400 A/m2 with Commission Internationale de l’Eclairage (CIE) coordinates of (0.31, 0.39). The EL spectra show color stability over different operating voltages.
    Part 3: New white polymeric light-emitting diodes (WPLEDs) from phosphorescent single polymer systems have been developed using dicotylfluorene monomer copolymerized with a phosphorescent dye, and end-capped with dye. All of the copolymers have good thermal stability with 5 % weight loss temperatures at 380~413°C and glass transition temperatures at 75~137°C. We obtained white-light-emission devices by adjusting the molar ratio of the co-monomers with a structure of indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)/ polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 300 cd/m2 at a current density of 2900 A/m2 with Commission Internationale de l’Eclairage (CIE) coordinates of (0.33, 0.34).

    總目錄 摘要......................................................I Abstract................................................III 誌謝......................................................V 總目錄...................................................VI 圖目錄..................................................XI Table目錄...............................................XV Scheme目錄.............................................XVI 第一章 緒論...............................................1 1-1 前言..................................................1 1-2 研究動機與目的........................................3 第二章文獻回顧與原理......................................6 2-1共軛導電高分子的特性...................................6 2-2光物理原理.............................................9 2-3分子間激發態(interchain exciton)......................11 2-4能量轉移機制..........................................12 2-5光激光與電激光原理....................................15 2-6發光元件之性質........................................16 2-7電洞注入材料..........................................18 2-8電洞傳輸材料..........................................18 2-9電子傳輸材料..........................................19 2-10聚茀(Polyfluorenes)的簡介............................21 2-11聚合方法簡介.........................................22 2-12磷光材料的優勢.......................................24 2-13高分子磷光材料的簡介.................................26 2-14高分子白光發光二極體(White polymeric light-emitting diode,WPLEDs) 的簡介.....................................29 第三章實驗步驟及分析裝置.................................31 3-1以end-capping錸發光團的聚茀為主之高分子磷光(phosphorescent)發光二極體...............................31 (1) 實驗藥品.............................................31 (2) 單體合成步驟.........................................33 (3) 高分子合成步驟.......................................33 3-2以聚茀共聚高分子為主之單一白光高分子發光二極體......37 (1) 實驗藥品.............................................37 (2) 單體合成步驟.........................................38 (3) 高分子合成步驟.......................................39 3-3 發純白光的單一磷光聚茀共聚高分子系統.................42 (1) 實驗藥品.............................................42 (2) 單體合成步驟.........................................43 (3) 高分子合成步驟.......................................44 3-4 實驗與分析儀器.......................................47 3-5 儀器分析原理與方法...................................48 3-6 發光二極體元件製備...................................55 第四章結果與討論.........................................59 4-1以end-capping錸發光團的聚茀為主之高分子磷光(phosphorescent)發光二極體...............................59 4-1-1 單體結構之合成與鑑定...............................59 (1) 1H-NMR圖譜分析.......................................59 (2) 元素分析.............................................59 4-1-2 高分子合成及結構鑑定...............................60 (1) 1H-NMR圖譜分析.......................................61 (2) 元素分析.............................................62 (3) 紅外光譜(FT-IR)分析..................................63 4-1-3熱性質分析..........................................63 (1) 熱重分析(TGA)........................................64 (2) 微差掃描熱分析(DSC)..................................64 4-1-4光學性質分析........................................65 (1) 吸收(UV-Vis)光譜分析.................................65 (2) 光激發光(PL)光譜分析.................................66 4-1-5電化學性質分析......................................68 4-1-6元件電激發光性質....................................70 (1) 電激光(EL)光譜分析...................................71 (2) 元件特性分析.........................................72 4-2以聚茀共聚高分子為主之單一白光高分子發光二極體........73 4-2-1 單體結構之合成與鑑定...............................73 (1) 1H-NMR圖譜分析.......................................73 (2) 紅外光譜(FT-IR)分析.................................73 (3) 元素分析.............................................74 (4) 微差掃瞄熱(DSC)分析..................................74 4-2-2 高分子合成與結構鑑定...............................75 (1) 1H-NMR圖譜分析.......................................76 (2) 元素分析.............................................76 4-2-3熱性質分析..........................................77 (1) 熱重分析(TGA)........................................77 (2) 微差掃描熱分析(DSC)..................................78 4-2-4光學性質分析........................................78 (1) 吸收(UV-Vis)光譜分析.................................78 (2) 光激發光(PL)光譜分析.................................78 4-2-5電化學性質分析......................................80 4-2-6元件電激發光性質....................................82 (1) 電激光(EL)光譜分析...................................82 (2) 元件特性分析.........................................83 4-3發純白光的單一磷光聚茀共聚高分子系統..................85 4-3-1 單體結構之合成與鑑定...............................85 (1) 1H-NMR圖譜分析.......................................85 (2) 元素分析.............................................86 (3) FAB-Mass分析.........................................86 4-3-2 高分子合成及結構鑑定...............................86 (1) 1H-NMR圖譜分析.......................................87 (2) 元素分析.............................................88 4-3-3熱性質分析..........................................89 (1) 熱重分析(TGA)........................................89 (2) 微差掃描熱分析(DSC)..................................90 4-3-4光學性質分析........................................90 (1) 吸收(UV-Vis)光譜分析.................................90 (2) 光激發光(PL)光譜分析.................................91 4-3-5電化學性質分析......................................94 4-3-6元件電激發光性質....................................95 (1) 電激光(EL)光譜分析...................................95 (2) 元件特性分析.........................................96 第五章 結論.............................................154 參考文獻................................................157 附錄一、 縮寫一覽表.....................................168 附錄二、 自述...........................................169 圖目錄 Figure 2-1. S與p軌域電子雲分布............................7 Figure 2-2. Molecular Orbital的形成.......................8 Figure 2-3. 導體、半導體、絕緣體的能帶圖..................8 Figure 2-4. 游離能、電子親和力與HOMO、LUMO的關係..........8 Figure 2-5. 單態基態、單態激發態、三重態激發態............9 Figure 2-6. 發光系統的能階圖.............................11 Figure 2-7. Förster Transfer示意圖.......................14 Figure 2-8. Dexter Transfer示意圖........................14 Figure 2-9. PLED光激發光原理圖...........................15 Figure 2-10. PLED電激發光原理圖..........................16 Figure 2-11. 多層元件結構................................20 Figure 2-12. 電洞注入材料................................20 Figure 2-13. 電洞傳輸材料................................20 Figure 2-14. 電子傳輸材料................................18 Figure 2-15. Polyfluorene之共聚物及其發光波長............22 Figure 2-16. Yong Cao發表之磷光高分子結構................28 Figure 2-17. 陳壽安教授發表之磷光高分子結構..............28 Figure 2-18. Jiaxing Jiang發表之白光高分子結構...........30 Figure 3-1. 發光元件結構圖...............................57 Figure 3-2. 真空熱蒸鍍系統...............................58 Figure 4-1. 1H-NMR spectrum of (mpy)2ReCO3Cl.............98 Figure 4-2. 1H-NMR spectrum of pdof-endqn................99 Figure 4-3. 1H-NMR spectrum of pdof-endpy...............100 Figure 4-4. 1H-NMR spectrum of pdof-endqn-Re............101 Figure 4-5. 1H-NMR spectrum of pdof-endpy-Re............102 Figure 4-6. FT-IR spectra of pdof-endpy-Re and pdof-endpy...................................................103 Figure 4-7. FT-IR spectra of pdof-endqn-Re and pdof-endqn...................................................104 Figure 4-8. TGA curves of polymers......................105 Figure 4-9. DSC curves of polymers......................106 Figure 4-10. UV-vis spectrum of (mpy)2Re(CO)3Cl solution and PL spectrum of pdof film............................107 Figure 4-11. UV/vis spectra of the polymers.............108 Figure 4-12. PL spectra of the blend of (mpy)2ReCO3Cl (10 % mole) in pdof and the (mpy)2ReCO3Cl dissolved in CHCl3...................................................109 Figure 4-13. The energy transfer diagrams of a polymer and a phosphor in a blending system(A) and in a bounding system(B).....................................................110 Figure 4-14. PL spectra of polymers dissolved in CHCl3...................................................111 Figure 4-15. PL spectra of polymer films................112 Figure 4-16. Cyclic voltammograms of Ferrocene..........113 Figure 4-17. Cyclic voltammograms of polymers...........114 Figure 4-18. Band diagrams of polymers determined from CV......................................................115 Figure 4-19. EL spectra of polymers.....................116 Figure 4-20. 1H-NMR spectrum of DBBT....................117 Figure 4-21. 1H-NMR spectrum of BrNTI...................118 Figure 4-22. FT-IR curves of DBBT(A) and BrNTI(B).......119 Figure 4-23. DSC curves of DBBT(A) and BrNTI(B).........120 Figure 4-24. 1H-NMR spectrum of PF-2%BT-end3%NTI........121 Figure 4-25. 1H-NMR spectrum of PF-3%BT-end2%NTI........122 Figure 4-26. 1H-NMR spectrum of PF-2%BT-end1%NTI........123 Figure 4-27. 1H-NMR spectrum of PF-2%BT-end0.5%NTI......124 Figure 4-28. TGA curves of the copolymers...............125 Figure 4-29. DSC curves of the copolymers...............126 Figure 4-30. UV-vis spectra of copolymers...............127 Figure 4-31. PL and UV-vis spectra of the BrNTI dissolved in CHCl3................................................128 Figure 4-32. PL spectra of copolymers...................129 Figure 4-33. Cyclic voltammograms of polymers...........130 Figure 4-34. Band diagrams of copolymers detrermined from CV:PF- 2%BT-3%endNTI(P1), PF-3%BT-2%endNTI(P2), PF-2%BT-1%endNTI (P3), PF-2%BT-0.5%endNTI(P4).....................131 Figure 4-35. EL spectra of copolymers...................132 Figure 4-36. EL spectra of the device of copolymers at different biases (a) PF-2%BT-3%endNTI (b) PF-3%BT-2%endNTI(c) PF-2%BT-1%endNTI (d)PF-2%BT-0.5%endNTI..............133 Figure 4-37. Current density (I)–voltage (V)–brightness (B) curves ofdevices from copolymers:(a) PF-2%BT-3%endNTI (b) PF-3%BT-2% endNTI (c)PF-2%BT-1%endNTI(d)PF-2%BT-0.5%endNTI..................................................134 Figure 4-38. 1H-NMR spectrum of Ir(brpbt)2macac.........135 Figure 4-39. Mass spectrum of Ir(brpbt)2macac...........136 Figure 4-40. 1H-NMR spectrum of P1......................137 Figure 4-41. 1H-NMR spectrum of P2......................138 Figure 4-42. 1H-NMR spectrum of P3......................139 Figure 4-43. 1H-NMR spectrum of P4......................140 Figure 4-44. TGA curves of copolymers...................141 Figure 4-45. DSC curves of copolymers...................142 Figure 4-46. PL and UV spectra of BrNTI and Ir(brpbt)2macac dissolved in CHCl3...............................143 Figure 4-47. UV-vis curves of polymers..................144 Figure 4-48. UV-vis spectrum of Ir(brpbt)2macac solution and PL spectrum of pdof film............................145 Figure 4-49. PL spectrum of the blend of Ir(brpbt)2macac (5 % mole) in pdof......................................146 Figure 4-50. PL spectra of copolymers dissolved in xylene..................................................147 Figure 4-51. PL spectra of copolymer films: (A) P1 and P2 (B) P3 and P4...........................................148 Figure 4-52. Cyclic voltammograms of copolymers.........149 Figure 4-53. Band diagrams of copolymers determined from CV......................................................150 Figure 4-54. EL spectra of copolymers with corresponding CIE coordinates : (A) P1 and P2 (B) P3 and P4 (inset: photo of P4 device during operation)....................151 Figure 4-55. EL spectra of the device of P4 at different biases with corresponding CIE coordinates...............152 Figure 4-56. I-V-B curves of copolymers: (A) P1 (B) P2 (C) P3 (D) P4...............................................153 Table目錄 Table 1-1. PLED與OLED性質比較.............................3 Table 4-1. Elemental analysis data of (mpy)2Re(CO)3Cl....60 Table 4-2. Molecualr weights and polydispersity index of polymers.................................................61 Table 4-3. Elemental analysis data of polymers...........63 Table 4-4. Thermal properties of polymers................65 Table 4-5. Optical properties of polymers................68 Table 4-6. Electrochemical properties of polymers........70 Table 4-7. Performance of the copolymer devices..........72 Table 4-8. Elemental analysis data of the monomers.......74 Table 4-9. Molecualr weights and polydispersity index of copolymers...............................................76 Table 4-10. Elemental analysis data of the polymers......77 Table 4-11. Thermal properties of the copolymers.........78 Table 4-12. Optical properties of copolymers.............80 Table 4-13. Electrochemical properties of polymers.......82 Table 4-14. Performance of the copolymer devices.........84 Table 4-15. Elemental analysis data of Ir(brpbt)2macac...86 Table 4-16. Molecualr weights and polydispersity index of copolymers...............................................87 Table 4-17. Elemental analysis data of the copolymers....88 Table 4-18. The theoretical and actual molar ratio of monomers.................................................89 Table 4-19. Thermal properties of the copolymers.........90 Table 4-20. Optical properties of copolymers.............93 Table 4-21. Electrochemical properties of copolymers.....95 Table 4-22. Performance of the copolymer devices.........97 Scheme目錄 Scheme 2-1. Heck、Suzuki、Stille、Yamamoto聚合反應式.....24 Scheme 3-1. Synthesis of (mpy)2Re(CO)3Cl.................33 Scheme 3-2. Synthesis of end-capped polydioctylfluorenes (pdofs) A: pdof-endqn B: pdof-endpy......................34 Scheme 3-3. Synthesis of pdof-endqn-Re...................36 Scheme 3-4. Synthesis of BrNTI and DBBT..................39 Scheme 3-5. Synthesis of copolymers......................41 Scheme 3-6. Synthesis of Ir(brpbt)2macac.................44 Scheme 3-7. Synthesis of copolymers......................46

    1. Shirakawa, H.; Chiang, C. K.; Fincher, C. R.; Park, Y. W. ; Heeger, A. J.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phy. Rev. Lett. 1977, 1098.
    2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990,
    347, 539.
    3. Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama,
    H.; Zhou, Z.; Nakamura, Y.; Kanbara, T. Macromolecules 1992, 25, 1214.
    4. Skoog, D. A.; West, D. M.; Holler, F. J. Fundamentals of Analytical
    Chemistry, 5th edition, Saunders College Publishing, 1988.
    5. Turro, N. J. Modern Molecular Photochemistry, Mill Valley,
    University Science Books, California, 1991.
    6. Skoog, D. A.; Holler, E. J.; Nieman, T. A. Principles of Instrumental
    Analysis, 5th edition, Saunders College Publishing, 1997.
    7. 黃孝文,國立成功大學碩士論文,2002。
    8. Bao, Z.; Feng, Y.; Dodabalapur, A.; Raju, V. R.; Lovinger, A. J.
    Chem Mater 1997, 9, 1299.
    9. Chang, S. C.; Bharathan, J.; Yang, Y. Appl Phys Lett 1998, 73, 2561.
    10. Patil, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J Am Chem Soc
    1987, 109, 1858.
    11. 翁文國;林振華 工業材料 民88年,156,75。
    12. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv Mater, 1999, 11, 605.
    13. Ho, P. K. H.; Granström, M.; Friend, R. H.; Greenham, N. C.; Adv Mater 1998, 10, 769.
    14. Kim, J. S.; Granström, M.; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F. J Appl Phys 1998, 84, 6859.
    15. Kim, J. S.; Friend, R. H.; Caciallia F. Appl Phys Lett 1999, 74, 3084.
    16. Sol, S. K.; Choil, W. K.; Chengl, C. H.; Leung, L. M.; Kwong, C. F. Appl Phys A 1999, 68, 447.
    17. Nüesch, F.; Forsythe, E. W.; Le, Q. T.; Gao, Y.; Rothberg, L. J. J Appl Phys 2000, 87, 7973.
    18. VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl Phys Lett 1996, 69, 2160.
    19. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl Phys Lett 1994, 65, 807.
    20. Yang, Y.; Heeger, A. J. Appl Phys Lett 1994, 64, 1245.
    21. Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J. Synth Met 1997, 87, 171.
    22. Deng, Z. B.; Ding, X. M.; Lee, S. T.; Gambling, W. A. Appl Phys Lett 1999, 74, 2227.
    23. Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.;
    Kirchmeyer, S.; Thurm, S.; Wehrmann, R. Synth Met 2000, 111, 139.
    24. Brown, T. M.; Kim, J. S.; Friend, R. H.; Caciall, F.; Daik, R.; Feast, W. J. Appl Phys Lett 1999, 75, 1679.
    25. Borsenberger, P. M.; Mey, W.; Chowdry, A. Appl Phys Lett 1978, 49, 273.
    26. Eamada, Y.; Sano, T.; Fujita, M.; Fujita, T.; Nishio, Y.; Shibata, K. Chem Lett 1993, 905.
    27. Johansson, N.; Salbeck, J.; Bauer, J.; Weissortel, F.; Broms, P.; Andersson, A.; Salaneck, W. R. Adv Mater 1998, 10, 1136.
    28. Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Tomasik, P. Appl Phys
    Lett 2000, 77, 933.
    29. Wang, J. F.; Kawabe, Y.; Shelaheen, S. E.; Morell, M. M.; Jabbour, G. E.; Lee, P. A.; Anderson, J.; Armstrong, N. R.; Kippelen, B.; Mash, E. A.; Peyghambarian, N. Adv Mater 1998, 10, 1136.
    30. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65,
    3610.
    31. Liu, J.; Tu, G.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.;
    Jing, X.; Wang, F. J Mater Chem 2006, 16, 1431.
    32. Lin, H. C.; Sung, H. H.; Tsai, C. M.; Li, K. C. Polymer 2005, 46,
    9810.
    33. Hou, Q.; Zhou, Q.; Zhang, Y.; Yang, W.; Yang, R.; Cao, Y.
    Macromolecules 2004, 37, 6299.
    34. Cheon, C. H.; Joo, S. H.; Kim, K.; Jin, J.; Shin, H. W.; Kim, Y. R.
    Macromolecules 2005, 38, 6336.
    35. Lawson, P.V.; Bredas, J. L.; Zojer, E,; Ganther, R.; Freitas, P.S.;
    Forster, M.; Scherf, U. Adv Funct Mater 2004, 14, 1097.
    36. Chi, C.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner G.
    Chem Eur J 2005, 11, 6833.
    37. List, E. J. W.; Guentner, R.; Freitas, P. S.; Scherf U. Adv Mater 2002,
    14, 374.
    38. Sung, H. H.; Lin, H. C. J Polym Sci, Part A: Polym Chem 2005, 43,
    2700.
    39. Wu, C. W.; Tsai, C. M.; Lin, H. C. Macromolecules 2006, 39, 4298.
    40. Pschirer, N. G.; Bunz, U. H. F. Macromolecules 2000, 33, 3961.
    41. Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.;
    Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules
    1998, 31, 1099.
    42. Liu, B.; Yu. W. L.; Lai, Y. H.; Huang, W. Macromolecules 2000, 33,
    8945.
    43. Sung, H. H.; Lin, H. C. Macromolecules 2004, 37, 7945.
    44. Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.;
    Muller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. AdV Mater 2001,
    13, 565.
    45. Lee, J. L.; Hwang, D. Synth Met 2000, 111, 195.
    46. Chen, J. P.; Klaerner, G.; Lee, J. I.; Mrkiewicz, D.; Lee, V. Y.; Miller,
    R. D.; Scott, J. C. Synth Met 1999, 107, 129.
    47. Cho, H. J.; Jung, B. J.; Cho, N. S.; Lee, J.; Shim, H. K.
    Macromolecules 2003, 36, 6704.
    48. Fu, Y.; Li, Y.; Li, J.; Yan, S.; Bo, Z. Macromolecules 2004, 37, 6395.
    49. Wu, C. W.; Lin, H. C. Macromolecules 2006, 39, 7232.
    50. Li, Z.; Di, C.; Zhu, Z.; Yu, G.; Li, Z.; Zeng, Q.; Li, Q.; Liu, Y.; Qin,
    G. Polymer 2006, 47, 7889.
    51. Chen, S. H.; Shiau, C. S.; Tsai, L. R.; Chen, Y. Polymer 2006, 47,
    8436.
    52. 劉挺中,國立成功大學碩士論文,2005。
    53. 林青鳳,國立中央大學碩士論文,2005。
    54. Ostrowski, J. C.; Robinson, M. R.; Heeger, A. J.; Bazan, G. C. Chem
    Commun 2002, 784.
    55. Chen, F. C.; Chang, S. C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.;
    Kido, J. J Polym Sci Part B Polym Phys 2003, 41, 2681.
    56. Baldo, S M.; Lamansky, A.; Burrows, P. E.; Thompson, M. E.;
    Forrest, S. R. Appl Phys Lett 1999, 75(1), 4.
    57. Huang, J.; Watanabe, T.; Ueno, K.; Yang, Y. Adv Mater 2007, 19, 73.
    58. Zhen, H.; Luo, C.; Yang, W.; Song, W.; Du, B.; Jiang, J.; Jiang, C.;
    Zhang, Y.; Cao, Y. Macromolecules 2006, 39, 1693.
    59. Chen, X.; Liao, J. L.; Liang, Y.; Ahmed, M. O.; Tseng, H. E.; Chen,
    S. A. J Am Chem Soc 2003, 125, 636.
    60. Strukelj, M.; Jordan, R.H.; Dodabalapur, A. J Am Chem Soc 1996,
    118, 1213.
    61. Tasch, S.; List, E. J. W.; Ekstrom, O.; Graupner, W.; Leising, G.;
    Schlichting, P.; Rohr, U.; Geerts, Y.; Scherf, U.; Mullen, K. Appl Phys
    Lett 1997, 71, 2883.
    62. Xie, Z.; Huang, J.S.; Li, C.N.; Wang, Y.; Li, Y. Q.; Shen, J Appl
    Phys Lett 1999, 74, 641.
    63. D’Andrade, B. W.; Thompson, M.E.; Forrest, S. R. Adv Mater 2002,
    14, 147.
    64. Tada, K.; Onodo, M. Jpn J Appl Phys 2005, 44, 4167.
    65. Kido, J.; Hongawa, K.; Okuyama K.; Nagai, K. Appl Phys Lett
    1994, 64, 815.
    66. Wang, L.; Lei, G.; Qiu, Y. Appl Phys Lett 2005, 97, 114503.
    67. Al Attar, H. A.; Monkman, A. P.; Tavasli, M.; Bettington, S.; Bryce,
    M. R. Appl Phys Lett 2005, 86, 121101.
    68. Gong, X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv
    Mater 2005, 17, 2053.
    69. Xu, Y.; Peng, J.; Jiang, J.; Xu, W.; Yang, W.; Cao, Y. Appl Phys Lett
    2005, 87, 193502.
    70. Nakaya, K. I.; Funabiki, K.; Muramatsu, H.; Shibata, K.; Matsui, M.
    Dyes and Pigments 1999, 43, 235.
    71. Konstantinova, T.; Spirieva, A.; Petkova, T. Dyes and Pigments 2000,
    45, 125.
    72. Liu, J.; Tu, G.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.; Jing,
    X.; Wang, F. J. Mater Chem 2006, 16, 1431.
    73. Kim, T. H.; Lee, H. K.; Park, O. O.; Chin, B. D.; Lee, S. H.; Kim, J.
    K. Adv Funct Mater 2006, 16, 611.
    74. Heliotis, G.; Stavrinou, P. N.; Bradley, D. D. C. Appl Phys Lett 2005,
    87, 103505.
    75. Hu, B.; Karasz, F.E. J Appl Phys 2003, 93, 1995.
    76. Shih, P. I.; Tseng, Y. H.; Wu, F. I.; Dixit, A. K.; Shu, C.F. Adv Funct Mater 2006, 16, 1582.
    77. Huang, J.; Li, G.; Wu, E.; Xu, Q.; Yang, Y. Adv Mater 2006, 18, 114.
    78. Tokito, S.; Suzuki, M.; Sato, F.; Kamachi, M.; Shirane, K. Organic
    Electronics 2003, 4, 105.
    79. Su, H. J.; Wu, F. I.; Shu, C.F. Macromolecules 2004, 37, 7197.
    80. Furuta, P. T.; Deng, L.; Garon, S.; Thompson, M. E.; Frechet, J. M. J.
    J Am Chem Soc 2004, 126, 15388.
    81. Liu, J.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.; Jing, X.;
    Wang, F. Adv Funct Mater 2006, 16, 957.
    82. Tu, G.; Mei, C.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.;
    Jing, X.; Wang, F. Adv Funct Mater 2006, 16, 101.
    83. Lee, S. K.; Hwang, D. H.; Jung, B. J.; Cho, N. S.; Lee, J.; Lee, J. D.;
    Shim, H. K. Adv Funct Mater 2006, 15, 1647.
    84. Zhen, H.; Xu, W.; Yang, W.; Chen, Q.; Xu, Y.; Jiang, J.; Peng, J.;
    Cao, Y.; Macromol Rapid Commun 2006, 27, 2095.
    85. Lee, S. K.; Ahn, T.; Cho, N. S.; Lee, J. I.; Jung, Y. K.; Lee, J.; Shim,
    H. K. J Polym Sci Part A: Polym Chem 2007, 45, 1199.
    86. Jiang, J.; Xu, Y.; Yang, W.; Guan, R.; Liu, Z.; Zhen, H.; Cao, Y.
    Adv Mater 2006, 18, 1769
    87. Klärner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R.D. Chem Mater 1999, 11, 1800.
    88. Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
    89. Gong, X.; Ma, W.; Ostrowski, J. C.; Bechgaard, K.; Bazan, G. C.; Heeger, A. J.; Xiao, S.; Moses, D. Adv Funct Mater 2004, 14, 393.
    90. Jin, Y.; Kim, J. Y.; Park, S. H.; Kim, J.; Lee, S.; Lee, K.; Suh, H.
    Polymer 2005, 46, 12158.
    91. Klärner, G.; Davey, M. H.; Chen, W. D.; Scott, J. C.; Miller, R.D. Adv Mater 1998, 10, 993.
    92. Hou, S.; Chan, W. K. Macromol rapid commun 1999, 20, 440.
    93. Sacksteder, L.; Zipp, A. P.; Brown, E. A.; Streich, J.; Demas, J. N.;
    Degraff, B. A. Inorg Chem 1999, 29, 4335.
    94. Zhang, M.; Lu, P.; Wang, X.; He, L.; Xia, H.; Zhang, W.; Yang, B.; Liu, L.; Yang, L.; Yang, M.; Ma, Y.; Feng, J.; Wang, D.; Tamai, N. J Phys Chem B 2004, 108, 13185.
    95. Schulz, G. L.; Chen, X.; Chen, S. A.; Holdcroft, S. Macromolecules 2006, 39, 9157.
    96. 涂煜勛,國立成功大學碩士論文,2005。
    97. Yang, W.; Huang, J.; Liu, C.; Niu, Y.; Hou, Q.; Yang, R.; Cao, Y. Polymer 2004, 45, 865.
    98. Pilgram, K.; Zupon, M.; Skiles, R. Heterocycl Chem 1970, 7, 629.
    99. Nakaya, K. I.; Funabiki, K.; Muramatsu, H.; Shibata, K.; Matsui, M. Dyes and Pigm 1999, 43, 235.
    100. Cao, H.; Chang, V.; Hernandes, R.; Heagy, M. D. J Org Chem 2005, 70, 4929.
    101. Mei, C.; Tu, G.; Zhou, Q.; Cheng, Y.; Xie, Z.; Ma, D.; Geng, Y.; Wang, L. Polymer 2006, 47, 4976.
    102. Wu, W. C.; Lee, W. Y.; Chen, W. C. Macromol Chem Phys 2006, 207, 1131.
    103. Zhen, H.; Jiang, C.; Yang, W.; Jiang, J.; Huang, F.; Cao, Y. Chem. Eur. J. 2005, 11, 5007.
    104. Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, Q. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2493.
    105. Srinivas, S.; Caputo, F. E.; Graham, M.; Gardner, S.; Davis, R. M.; McGrath, J. E.; Wilkes, G. L. Macromolecules 1997, 30, 1012.
    106. Chen, F. C.; Chang, S. C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido, J. J Polym Sci, Part B: Polym Phys 2003, 41, 2681.
    107. Zhen, H.; Xu, W.; Yang, W.; Chen, Q.; Xu, Y.; Jiang, J.; Peng, J.; Cao, Y. Macromol Rapid Commun 2006, 27, 2095.
    108. Zhang, Y.; Xu, Y.; Niu, Q.; Peng, J.; Yang, W.; Zhu, X.; Cao, Y. J Mater Chem 2007, 17, 992.

    下載圖示 校內:2008-07-04公開
    校外:2017-07-04公開
    QR CODE