簡易檢索 / 詳目顯示

研究生: 王信文
Wang, Hsin-Wen
論文名稱: 利用環形剪力試驗探討卓蘭層砂岩之殘餘剪力強度與剪位移的關係
The Relationship between Residual Shear Strengh and Shear Displacement of Cholan Sandstone Using Ring Shear Test
指導教授: 李德河
Li, De-He
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 環形剪力試驗殘餘剪力強度雷射掃描粗糙度(JRC)
外文關鍵詞: Ring shear test, Residual shear strength
相關次數: 點閱:157下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統求取節理岩塊之剪力強度參數,多採用傳統直接剪力試驗儀將試體加載不同正向應力後,透過剪動過程中量測試體之剪力強度參數c、ф。但由於傳統直接剪力試驗所用的試體多為5cm,尺寸偏小,剪動位移量受到限制,且剪動過程中剪斷面積隨剪位移改變而改變,常無法量測到節理岩塊完整的剪力強度變化曲線及真正的殘餘剪力強度。為改善剪動位移量不足的缺點,本研究嘗試以反覆直接剪力試驗及環形剪力試驗針對草嶺地滑區的卓蘭層砂岩試體進行大剪動位移的剪力試驗,觀察砂岩試體的受剪行為,並獲得砂岩試體真實的殘餘剪力強度參數。試驗結果顯示,傳統直接剪力試驗之剪力強度參數明顯偏高,且剪力-剪位移曲線的趨勢而發現,在試驗結束時剪力強度尚未達穩定階段。而反覆直接剪力試驗的剪位移雖然可累積到100mm,但由於每一階段的剪位移僅10mm仍不足以使剪力強度達穩定狀況,尤其在高正向應力時期更為明顯。環形試驗方面,由於環形節理岩塊在剪動過程中,剪面積維持不變,因此具有可行極大剪動位移的優點,並可記錄剪力-剪位移曲線發展到尖峰狀態在過渡到殘餘狀態的完整過程。比較殘餘剪力強度參數發現,反覆直接剪力試驗中的殘餘摩擦角雖然較傳統直接剪力試驗低3.42度,但仍比環形剪力試驗的殘餘摩擦角高了2.11度之多,顯示由環形剪力試驗可獲得節理岩塊真實的殘餘剪力強度參數。
    另一方面,透過雷射掃描不同累積剪動位移量下的節理剖面發現,卓蘭層砂岩之節理岩塊之節理剖面在累積剪位移超過200mm後開始呈現較平整,粗糙度(JRC值)也開始偏小,JRC值分佈也逐漸集中。且透過3維度剖面發現,剪動初期(累積剪位移小於50mm)主要為節理面上的小起伏(次要節瘤)產生剪斷或壓碎破壞,隨著累積剪位移持續增加,節理面上的大起伏(主要節瘤)也開始產生破壞,最後才進入真正的殘餘狀態,此時所需要的剪位移大約為200mm。
    而之後再進行利用GIS系統將立體剖面圖進行陰影量的分析把各個階段的剪位移陰影量分別求出,最後帶入類神經網路進行擬合可得到不同在不同初始陰影量及正向力和剪位移下的剪力強度進而了解在殘餘狀態時卓蘭層砂岩的殘餘剪力強度模式。

    Traditionally, to get shearing intensive parameter c and ф of joint rocks is mostly by using direct shearing tester to load different forward stress on the testing objects through the shearing process. However, most of the testers are about 5 cm, which is quite small, not only the shearing displacement quantity is limited, but also can’t measure the variation of shearing intensity curve and the real remaining shearing force intensity since the shear area changed along with shear position. In order to improve the insufficient of shearing displacement quantity, our research observes the behavior of shearing test of the Zhoulan sandstone tester by using repeated direct shearing force test and circular shearing force test in Tsaoling Landslip area. The result shows that parameter resulted from traditional method is apparently higher than ours, and the shearing force-displacement quantity curve shows its instability at the end of the test. On the other hand, although the displacement of repeated direct shearing force test can be accumulated to 100 mm, it’s still not stable enough since the displacement of each step is only 10 mm, especially during higher forward stress period. As for circular shearing force test, since the circular joint rocks remain unchanged during the shearing process, and the shear area remains the same, it acquires the advantage of massive shearing displacement, and can record the full process of the variation of shearing force-displacement quantity curve. To compare the remnant shearing force parameter, we found that although the remnant friction angle in repeated direct shearing force test is 3.42 degree lower than traditional direct shearing force test; however, it’s still 2.11 higher than circular shearing force test. It shows that the circular shearing force test can acquire a more accurate remnant shearing force parameter of joint rocks.
    On the other hand, we discovered that by scanning the joint section under different accumulated shearing displacement, the joint rock sections of Zhoulan sandstones become flatter when the displacement exceeds 200 mm, and the JRC Value becomes smaller and more centralized. Moreover, through 3D section, it shows that in the primary stage of shearing movement (the accumulated displacement is less than 50 mm), the minor knobble of the surface of joint begins sheared or crashed. With the increase of accumulated shearing displacement, the main knobble begins crashed as well, and then go on to the real accumulated status, and shearing displacement is about 200 mm.
    Followed up to use GIS system to analyze the shadow quantity of the 3D section, and to acquire the shadow quantity of shearing displacement in each step; finally, by using the neural network for simulation, we can figure out the model of remnant shearing force of Zhoulan sandstones under different primary shadow quantity, direct forward stress, and shearing force with displacement.

    目錄 第一章 緒論 .......................................................................................1 1-1 研究動機與目的...................................................................1 1-2 研究流程及大綱...................................................................2 第二章 文獻回顧 ...............................................................................4 2-1 草嶺地滑區地質概述...........................................................4 2-2 岩體的破壞準則...................................................................7 2-3 環形剪力試驗之相關研究 .................................................9 2-4 岩石節理面剪力強度模式 ...............................................15 2-5 殘餘剪力強度與漸進式破壞.............................................18 2-6類神經網路分析介紹……………………………………...28 第三章 研究方法 ..............................................................................31 3-1 試體來源與製作方法..........................................................31 3-2 試驗儀器..............................................................................36 3-3 研究方法..............................................................................46 第四章 試驗結果與討論 ..................................................................56 4-1 基本性質試驗......................................................................56 4-2 直接剪力試驗.......................................................................63 4-3 環形剪力試驗.......................................................................70 4-4 受剪過程節裡面起伏與微觀構造變化..............................81 4-5 陰影量分析……………………………………………......96 第五章 結論與建議...........................................................................105 5-1 結論......................................................................................105 5-2 建議……………………………………………………….106 參考文獻…………………………………………………………...107

    1. Aurelian C. Trandafir, Kyoji Sassa,Undrained cyclic shear response evaluation of sand based on undrained monotonic ring shear tests,
    Soil Dynamics and Earthquake Engineering, Volume 24, Issue 11, December 2004, p. 781-787.
    2. Bishop﹐A.W.﹐Green﹐G.E.﹐Garaga﹐V.K.﹐Andresen﹐A.﹐and Brown﹐ J.D.﹐“A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength﹐” Geotechnique﹐Vol.21﹐NO.4﹐p. 273-328﹐1971.
    3. Chang,S.K., Lee,D.H.,Wu,J.H.,Juang,C.H., Rainfall-based criteria for assessing slump rate of mountainous highway slopes:A case study of slopes along Highway 18 in Alishan, Taiwan,2011.
    4. Hecht-Nielsen R, Kolmogorovs mapping neural network existence theorem. Proceedings of the first IEEE international conference on neural networks, San Diego CA, USA 1987.p.11–4.
    5. Hush,DR., Classification with neural networks: a performance analysis. Proceedings of the IEEE international conference on systems Engineering Dayton Ohia, USA, 1989; 277–80.
    6. K. Sassa,1989, geotechnical model for the motion of landslides , Proc 5th International Symposium on Landslides,Lausanne,
    International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, P. 88.
    7. Kutter﹐H.K.﹐“ROTARY SHEAR TESTING OF ROCK JOINTS﹐”Advances in Rock Mechanics﹐p. 254-262﹐1974.
    8. Kanellopoulas I, Wilkinson GG. Strategies and best practice forneural network image classification. Int J Remote Sensing 1997;18:711–25.
    9. Masters T. Practical neural network recipes in C++. Boston MA: Academic Press; 1994.
    10. Ripley BD. Statistical aspects of neural networks. In: arndoff-Neilsen OE, Jensen JL, Kendall WS, editors. Networks and chaos-statistical and probabilistic aspects. London: Chapman &Hall p. 40–123.1993.
    11. Toshitaka Kamai,Monitoring the process of ground failure in repeated landslides and associated stability assessments,Engineering Geology, Volume 50, Issues 1-2, p. 71-84,1998.
    12. Wang C. A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania,USA, 1994.
    13. Xu﹐S.﹐and M. H. de Freitas﹐“Use of a Rotary Shear Box for Testing the Shear Strength of Rock Joints﹐” Geotechnique﹐Vol. 38﹐No. 2﹐p. 301~309﹐1988.
    14. 林欽崇,“反覆直剪試驗下不規則節裡面之剪力衰減行為”,國立台灣海洋大學河海工程研究所碩士論文,2006
    15. 李正楠,“草嶺崩坍地受震行為初探”,國立台灣大學土木工程學研究所碩士論文,2001。
    16. 吳俊賢,“利用環形剪力試驗儀探討南部軟岩殘餘強度特性”,國立成功大學土木工程研究所碩士論文,2005。
    17. 杜振成,“影像處理方法運用於岩石節理面強度預估之初步研究”,國立成功大學土木工程研究所碩士論文,2000。
    18. 何春蓀,“台灣地質概論-台灣地質圖說明書”,經濟部中央地質調查所,第二版,台北,台灣,2003。
    19. 林宏明,“軟岩在不同環境及應力條件下之力學行為”,國立成功大學土木工程研究所博士論文,2000。
    20. 林靖奡,“節理面粗糙度量測與剪力強度關係之研究”,國立成功大學土木工程研究所碩士論文,2001。
    21. 姜禮仙,“岩石材料在主應力軸旋轉下之力學行為之研究”,國立成功大學土木工程研究所碩士論文,1993。
    22. 洪如江、林美聆、林銘郎、鄭富書,“九二一集集大地震後續短期研究-草嶺大崩山之後續研究”,報告編號:NCREE-00-057,國家地震工程研究中心,台北,台灣,2000。
    23. 柯昭宇,“多孔隙軟弱砂岩受振動態力學特性之研究”,國立成功大學土木工程研究所碩士論文,2008。
    24. 陳柏穎,“不排水環形剪力試驗探討關廟層砂岩之剪力行為”,國立成功大學土木工程研究所碩士論文,2006。
    25. 黃燦輝,“軟弱岩石隧道問題研究(Ⅰ) ”,行政院國家科學委員會專題研究計劃成果報告,1996。
    26. 葉怡成,2001,應用類神經網路,儒林圖書有限公司,台北市。
    27. 葉信宏,“以中空三軸試驗探討泥岩材料之力學行為研究”,國立成功大學土木工程研究所碩士論文,1999。
    28. 楊長義、王前堯(2008,10),岩石節理面節瘤磨損與剪力強度之關係,2008岩盤工程研討會,台北市,183-190。
    29. 像片基本圖:9520-067青山坪(2000)、9520-068草嶺(2000)、9520-077坔埔(2000)、9520-19草嶺(1982),行政院農業委員會林務局農林航空測量所,台北,台灣。
    30. 廖正傑,“南部軟岩於環形剪力試驗及力學特性之研究”,國立成功大學土木工程研究所碩士論文,2004。
    31. 賴佳澤,“利用環型剪力試驗探討具節理岩塊之軟弱砂岩受振力學特性”,國立成功大學土木工程研究所碩士論文,2009。
    32. 謝孟仲,“影像法應用於人工節理面強度之研究”,國立成功大學土木工程研究所碩士論文,2002。
    33. 蘇苗彬、何敏龍,“岩石節理面粗糙係數之尺寸效應”,興大工程學報,卷8,2期,PP.1-9,1997。
    34. 劉桓吉、李錦發、紀宗吉,“五萬分之ㄧ台灣地質圖-雲林”,經濟部中央地質調查所,圖幅第三十八號,第二版,台北,台灣,2004。
    35. 藍洋峻,“膠結不良砂岩之殘餘強度試驗與解析”,國立交通大學土木工程研究所碩士論文,2005。
    36. 嚴國禎,“錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究”,國立台灣大學土木工程學研究所碩士論文,2000。

    下載圖示 校內:2014-09-07公開
    校外:2014-09-07公開
    QR CODE