| 研究生: |
許琳 Hsu, Lin |
|---|---|
| 論文名稱: |
Sn-Cu及Sn-Cu-Zn光伏銅帶之模組界面組織特性與通電機制研究 A Study on Characteristics of Microstructures and Electrical Mechanism of Sn-Cu and Sn-Cu-Zn Photovoltaic Copper Ribbon Modules |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 洪飛義 Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 光伏模組 、介金屬化合物 、Sn-Cu 、Sn-Cu-Zn合金 |
| 外文關鍵詞: | Photovoltaic modules, IMC, Sn-Cu, Sn-Cu-Zn |
| 相關次數: | 點閱:195 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用Sn-xCu(x=0.3, 0.7, 2.5, 5wt.%)四種銲錫合金做為光伏模組的鍍錫層,以Sn-0.7Cu合金製成之光伏模組具有最低電阻值,但經過72 hr通電後,界面IMC快速成長,大量消耗銀膠層,導致其體電阻值上升約52%。因此後續利用兩種不同方式進行優化實驗。
第一個改善方式為成分調整,將Zn元素添加於前述實驗中電性最佳之成分(Sn-0.7Cu),形成Sn-Cu-Zn系統之光伏模組。添加0.2Zn於Sn-0.7Cu合金中能有效抑制模組界面IMC過度成長,使其電阻值較Sn-0.7Cu光伏模組低。在72 hr通電後,Sn-0.7Cu-0.2Zn光伏模組之體電阻僅上升約9.5%,有效改善Sn-0.7Cu光伏模組在長時間通電後電阻大幅上升的問題。第二個改善實驗為改變鍍層附著於銅帶之方式,以電鍍取代原先之熱浸鍍。以電鍍製成之光伏銅帶其鍍層厚度可降低為原先之1/3 (30 μm→10 μm),藉由電鍍得到較薄的鍍層,於回銲後減少銀原子擴散到銲錫合金的量,進而提升模組之導電性質。上述兩組優化光伏模組於通電前後其剝離力值皆符合工業應用標準。
Sn-0.7Cu-0.2Zn光伏模組具有最低電阻值(0.021 Ω),且在長時間通電後電阻值僅上升0.002 Ω,雖然電鍍製成之光伏模組擁有較厚的殘留銀膠層,但其界面IMC平均厚度較厚,導致整體電阻值較高,因此抑制界面IMC成長為降低光伏模組體電阻之最有效方式。
Sn-Cu alloys have been recognized as the most promising Pb-free candidates for its well wettibility and lower cost. This study chooses Sn-xCu(x=0.3, 0.7, 2.5, 5 wt.% ) to use in photovoltaic (P.V.) modules, and researches on the applicabilityofSn-xCu/Cu P.V. modules by measuring resistance, microstructure and pull-off test. The result showed that Sn-0.7Cu is the most suitable solder applied in P.V. modules. But after current test, the resistance of Sn-0.7Cu modules increases 52%. In order to fix this problem, we tried two improved experiments.
The first improved experiment is changing solder in modules. Adding 0.2Zn in Sn-0.7Cu could inhibit the growth of IMC that could promote the conductivity of modules. After current test, the resistance of Sn-0.7Cu-0.2Zn modules only increases 9.5% which confirms the true of adding 0.2Zn would stabilize the IMC at interface. The second improved experiment is changing experimental process of P.V. ribbon. Using electroplating to replace hot-dipped could decrease the thickness of solder layer which would decrease the consumption of Ag paste and increase the conductivity of modules.
Sn-0.7Cu-0.2Zn modules have the lowest resistance (0.021 Ω). After 72hr current test, the resistance only increases 0.002Ω. Although PSC modules have the thickest Ag paste after reflowed, the IMCs at interface still over grow after current test. To sum up, depressing the growth of IMC is the best way to enhance conductivity.
1. S. Schindler and S. Wiese, "Investigation of wettability and interface reactions of Sn-Pb, Sn-Cu, Sn-Ag and Sn-Ag-Cu solders for solar cell interconnections". 2010: pp. 1-5.
2. S. Wiese, R. Meier, F. Kraemer, and J. Bagdahn, "Constitutive behaviour of copper ribbons used in solar cell assembly processes". 2009: pp. 1-8.
3. G. Cuddalorepatta, A. Dasgupta, S. Sealing, J. Moyer, T. Tolliver, and J. Loman, "Durability of Pb-free solder between copper interconnect and silicon in photovoltaic cells". Progress in Photovoltaics: Research and Applications, 2010. 18(3): pp. 168-182.
4. A. Zoran Miric and A. Grusd, "Lead‐free alloys". Soldering & Surface Mount Technology, 1998. 10(1): pp. 19-25.
5. K.-S. Bae and S.-J. Kim, "Microstructure and adhesion properties of Sn–0.7Cu/Cu solder joints". Journal of Materials Research, 2011. 17(04): pp. 743-746.
6. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, "Pb-free solders for flip-chip interconnects". Jom, 2001. 53(6): pp. 28-33.
7. J.-W. Yoon and S.-B. Jung, "Interfacial reactions between Sn–0.4Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction". Journal of Alloys and Compounds, 2005. 396(1-2): pp. 122-127.
8. P.T. Vianco and D.R. Frear, "Issues in the replacement of lead-bearing solders". Jom, 1993. 45(7): pp. 14-19.
9. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, "Properties of lead-free solder alloys with rare earth element additions". Materials Science and Engineering: R: Reports, 2004. 44(1): pp. 1-44.
10. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, "A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates". Journal of Materials Science: Materials in Electronics, 2010. 21(5): pp. 421-440.
11. 翁敏航, "太陽能電池-原理、元件、材料、製程與檢測技術". 民國99年: pp. 83-92頁.
12. H.-H. Hsieh, F.-M. Lin, F.-Y. Yeh, and M.-H. Lin, "The effects of temperature and solders on the wettability between ribbon and solar cell". Solar Energy Materials and Solar Cells, 2009. 93(6-7): pp. 864-868.
13. C.-M. Chen and S.-W. Chen, "Electric current effects on Sn/Ag interfacial reactions". Journal of Electronic Materials, 1999. 28(7): pp. 902-906.
14. T. Takemoto and T. Funaki, "Lead-Free Electronics Packaging. Role of Electrode Potential Difference between Lead-Free Solder and Copper Base Metal in Wetting". Materials Transactions, 2002. 43(8): pp. 1784-1790.
15. F.-Y. Hung, H.-M. Lin, P.-S. Chen, T.-S. Lui, and L.-H. Chen, "A study of the thin film on the surface of Sn–3.5Ag/Sn–3.5Ag–2.0Cu lead-free alloy". Journal of Alloys and Compounds, 2006. 415(1-2): pp. 85-92.
16. P. Rossiter, " The electrical resistivity of metals and alloys". London, U.K., 1991.
17. Y. Tian, Q.M. Zhang, and Z.Q. Li, "Electrical transport properties of Ag3Sn compound". Solid State Communications, 2011. 151(20): pp. 1496-1499.
18. D.-Q. Yu, T.C. Chai, M.L. Thew, Y.Y. Ong, V.S. Rao, L.C. Wai, and J.H. Lau, "Electromigration study of 50μm pitch micro solder bumps using four-point Kelvin structure". 2009: pp. 930-935.
19. S. Wiese, F. Kraemer, N. Betzl, and D. Wald, "Interconnection technologies for photovoltaic modules - analysis of technological and mechanical problems". 2010: pp. 1-6.
20. K.-J. Chen, F.-Y. Hung, T.-S. Lui, L.-H. Chen, D.-W. Qiu, and T.-L. Chou, "Microstructure and electrical mechanism of Sn–xAg–Cu PV-ribbon for solar cells". Microelectronic Engineering, 2014. 116: pp. 33-39.
21. N. Saunders and A.P. Miodownik, "The Cu-Sn (Copper-Tin) system". Bulletin of Alloy Phase Diagrams, 1990. 11(3): pp. 278-287.
22. M.G. Cho, S.K. Kang, D.-Y. Shih, and H.M. Lee, "Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging". Journal of Electronic Materials, 2007. 36(11): pp. 1501-1509.
23. F. Wang, X. Ma, and Y. Qian, "Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition". Scripta Materialia, 2005. 53(6): pp. 699-702.
24. D. Ma, W.D. Wang, and S.K. Lahiri, "Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow". Journal of Applied Physics, 2002. 91(5): p. 3312.
25. 劉培基, "錫鋅銀銲錫合金元素在銲錫過程對銅金屬反應影響之研究". 國立成功大學碩士論文, 民國93年.
26. A.A. El-Daly and A.E. Hammad, "Development of high strength Sn–0.7Cu solders with the addition of small amount of Ag and In". Journal of Alloys and Compounds, 2011. 509(34): pp. 8554-8560.
27. "ASM Handbook: Alloy Phase Diagrams". ASM International, 1992. Vol.3: pp. 269 and 769.
28. K.A. M. Hansen, "Constitution of binary alloys second edition". McGraw-Hill Book Company, 1989: p. 649.
29. F.-J. Wang, F. Gao, X. Ma, and Y.-Y. Qian, "Depressing effect of 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging". Journal of Electronic Materials, 2006. 35(10): pp. 1818-1824.
30. T.-C. Hsuan and K.-L. Lin, "Microstructural evolution of ɛ-AgZn3 and η-Zn phases in Sn–8.5Zn–0.5Ag–0.01Al–0.1Ga solder during aging treatment". Journal of Alloys and Compounds, 2009. 469(1-2): pp. 350-356.
31. Y.-W. Yen, W.-T. Chou, Y. Tseng, C. Lee, and C.-L. Hsu, "Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders". Journal of Electronic Materials, 2007. 37(1): pp. 73-83.
32. M.B. S. Nieland, A. Boettger, A. Ostmann, H. Reichl, "Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells". 22nd European Photovoltaic Solar Energy Conference and Exhibition, 2007.
33. J.R. Black, "Electromigration failure modes in aluminum metallization for semiconductor devices". Proceedings of the IEEE, 1969. 57(9): pp. 1587-1594.
34. J.R. Black, "Electromigration A brief survey and some recent results". IEEE Transactions on Electron Devices, 1969. 16(4): pp. 338-347.
35. J.W. Nah, J.O. Suh, and K.N. Tu, "Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature". Journal of Applied Physics, 2005. 98(1): p. 013715.
36. 王大倫譯, "實用電鍍學". 財團法人徐氏基金會, 民國87年.
37. Y.G. Lee and J.G. Duh, "Phase Analysis in the Solder Joint of Sn-Cu Solder/IMCs/Cu Substrate". Materials Characterization, 1999. 42(2-3): pp. 143-160.
38. W.T. Chen, C.E. Ho, and C.R. Kao, "Effect of Cu concentration on the interfacial reactions between Ni and Sn–Cu solders". Journal of Materials Research, 2011. 17(02): pp. 263-266.
39. M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing, and S. Baoan, "Correlation between viscosity of molten Cu–Sn alloys and phase diagram". Physica B: Condensed Matter, 2007. 387(1-2): pp. 1-5.
40. N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, and L. Wang, "Viscosity and Surface Tension of Liquid Sn-Cu Lead-Free Solders". Journal of Electronic Materials, 2009. 38(6): pp. 828-833.
41. R.D. Hultgren, Pramod D ; Hawkins, Donald T ; Gleiser, Molly ; Kelley, Kenneth K, "Selected Values of the Thermodynamic Properties of Binary Alloys". ASM International, 1972.
42. M.S. Park and R. Arroyave, "Formation and Growth of Intermetallic Compound Cu6Sn5 at Early Stages in Lead-Free Soldering". Journal of Electronic Materials, 2010. 39(12): pp. 2574-2582.
43. 莊琮貿, "Sn-xNi和SAC105合金應用於光伏模組之界面微觀組織特性及通電機制研究". 國立成功大學材料科學及工程學系,碩士論文, 民國103年.
44. C.-y. Chou and S.-w. Chen, "Phase equilibria of the Sn–Zn–Cu ternary system". Acta Materialia, 2006. 54(9): pp. 2393-2400.
45. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, and L. Nguyen, "Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints". Applied Physics Letters, 2006. 88(1): p. 012106.
校內:2019-07-26公開