| 研究生: |
吳東明 Wu, Dong-Ming |
|---|---|
| 論文名稱: |
自我對準閘極技術應用於雙層石墨烯場效電晶體之研究 Self-Aligned Fabrication of Bilayer Graphene Field Effect Transistors |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 雙層石墨烯 、化學氣相沉積 、自我對準閘極 |
| 外文關鍵詞: | LPCVD, Bilayer graphene, Self-aligned fabrication |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於快速的工業化和半導體製造的發展,CMOS技術的演進不僅只是依靠微縮元件的能力,還需要引進創新的元件架構和奈米材料。
石墨烯為單原子層的石墨,屬於一種二維結構的材料,擁有出色的載子遷移率以及場效特性,這些特性讓石墨烯在電子元件的應用上,成為熱門的研究材料,然而,石墨烯本身為零能隙,不像一般的半導體具有足夠的能隙,因此,以零能隙的材料為基礎,新穎的電晶體或者是新型元件結構的研究也相繼被許多研究團隊提出,而由於雙層石墨烯本身特殊的電子能帶,提供元件製作上的一個可能性。
在這篇論文中,我們會著重在利用化學氣相沉積法來合成大面積的雙層石墨烯,此外,我們會利用電子束微影來製作雙層石墨烯場效電晶體,並配合自我對準閘極技術,再者,利用電子束微影來製作鋁閘極,藉由高純度氧氣來氧化使其形成自生氧化鋁,更重要的是,在常溫常壓下的環境,我們分析雙層石墨烯的自我對準閘極場效電晶體的電特性。
Due to the fast pace of industrialization and the development of semiconductor manufacturing, the progress of semiconductor technology not only depends on the capability of scaling down the device dimensions, but also requires the introduciotn of innovative device architectures and nano-materials. In this thesis, we demonstrate the synthesis of high-quality bilayer graphene by CVD, and present a facile process for bilayer graphene field effect transistors with self-aligned source/drain contacts.
[1] Bardeen, John, and Walter Hauser Brattain. "The transistor, a semi-conductor triode." Physical Review 74.2 (1948): 230.
[2] Adel S. Sedra and Kenneth C. Smith. “Microelectronic circuits. 6th”
[3] Sun, Jack Y-C. "System scaling and collaborative open innovation." VLSI Technology (VLSIT), 2013 Symposium on. IEEE, 2013.
[4] Katsnelson, Mikhail I. "Graphene: carbon in two dimensions." Materials today10.1 (2007): 20-27.
[5] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[6] Bolotin, Kirill I., et al. "Ultrahigh electron mobility in suspended graphene."Solid State Communications 146.9 (2008): 351-355.
[7] Murali, Raghunath, et al. "Breakdown current density of graphene nanoribbons."Applied Physics Letters 94.24 (2009): 243114.
[8] Seol, Jae Hun, et al. "Two-dimensional phonon transport in supported graphene." Science 328.5975 (2010): 213-216.
[9] Lee, Changgu, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." science 321.5887 (2008): 385-388.
[10] Nair, R. R., et al. "Fine structure constant defines visual transparency of graphene." Science 320.5881 (2008): 1308-1308.
[11] Partoens, Bart, and F. M. Peeters. "From graphene to graphite: Electronic structure around the K point." Physical Review B 74.7 (2006): 075404.
[12] Garlow, Joseph A., et al. "Large-area growth of turbostratic graphene on Ni (111) via physical vapor deposition." Scientific reports 6 (2016).
[13] Latil, Sylvain, and Luc Henrard. "Charge carriers in few-layer graphene films."Physical Review Letters 97.3 (2006): 036803.
[14] Wallace, Philip Richard. "The band theory of graphite." Physical Review 71.9 (1947): 622.
[15] Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
[16] Ferrari, Andrea C. "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects." Solid state communications 143.1 (2007): 47-57.
[17] Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature 438.7065 (2005): 201-204.
[18] Novoselov, K. S. A., et al. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438.7065 (2005): 197-200.
[19] Avouris, Phaedon. "Graphene: electronic and photonic properties and devices."Nano letters 10.11 (2010): 4285-4294.
[20] Maultzsch, J., et al. "Phonon dispersion in graphite." Physical review letters92.7 (2004): 075501.
[21] Dresselhaus, M. S., A. Jorio, and R. Saito. "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy." Annu. Rev. Condens. Matter Phys. 1.1 (2010): 89-108.
[22] Huang, Pinshane Y., et al. "Grains and grain boundaries in single-layer graphene atomic patchwork quilts." Nature 469.7330 (2011): 389-392.
[23] Blake, P., et al. "Making graphene visible." Applied Physics Letters 91.6 (2007)
[24] Berger, Claire, et al. "Electronic confinement and coherence in patterned epitaxial graphene." Science 312.5777 (2006)
[25] De Heer, Walt A., et al. "Epitaxial graphene." Solid State Communications143.1 (2007)
[26] Hass, J., W. A. De Heer, and E. H. Conrad. "The growth and morphology of epitaxial multilayer graphene." Journal of Physics: Condensed Matter 20.32 (2008)
[27] Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H. (2008). Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 3(9), 538-542.
[28] Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature nanotechnology, 3(5), 270-274.
[29] Hagstrom, S., H. B. Lyon, and G. A. Somorjai. "Surface structures on the clean platinum (100) surface." Physical Review Letters 15.11 (1965): 491.
[30] Lyon, H. B., and G. A. Somorjai. "Low‐Energy Electron‐Diffraction Study of the Clean (100),(111), and (110) Faces of Platinum. "The Journal of Chemical Physics 46.7 (1967): 2539-2550.
[31] Morgan, A. E., and G. A. Somorjai. "Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface." Surface Science12.3 (1968): 405-425.
[32] Grant, J. T., and T. W. Haas. "A study of Ru (0001) and Rh (111) surfaces using LEED and Auger electron spectroscopy." Surface Science 21.1 (1970): 76-85.
[33] Sutter, Peter W., Jan-Ingo Flege, and Eli A. Sutter. "Epitaxial graphene on ruthenium." Nature materials 7.5 (2008): 406-411.
[34] Obraztsov, A. N., et al. "Chemical vapor deposition of thin graphite films of nanometer thickness." Carbon 45.10 (2007): 2017-2021.
[35] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93(11), 113103.
[36] Reina, Alfonso, et al. "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano letters 9.1 (2008): 30-35.
[37] Reina, Alfonso, et al. "Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces." Nano Research2.6 (2009): 509-516.
[38] Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457.7230 (2009): 706-710.
[39] Chae, Seung Jin, et al. "Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation." Advanced Materials 21.22 (2009): 2328-2333.
[40] Li, Xuesong, et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009): 1312-1314.
[41] Ferraro, John R. Introductory raman spectroscopy. Academic press, 2003.
[42] Colthup, Norman. Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
[43] Reich, Stephanie, and Christian Thomsen. "Raman spectroscopy of graphite."Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 362.1824 (2004): 2271-2288.
[44] Malard, L. M., et al. "Raman spectroscopy in graphene." Physics Reports473.5 (2009): 51-87.
[45] Das, Anindya, et al. "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature nanotechnology 3.4 (2008): 210-215.
[46] Pimenta, M. A., et al. "Studying disorder in graphite-based systems by Raman spectroscopy." Physical chemistry chemical physics 9.11 (2007): 1276-1290.
[47] Yan, Jun, et al. "Electric field effect tuning of electron-phonon coupling in graphene." Physical review letters 98.16 (2007): 166802.
[48] Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers."Physical review letters 97.18 (2006): 187401.
[49] Cancado, L. G., et al. "General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy." Applied Physics Letters88.16 (2006): 163106-163106.
[50] Saito, R., et al. "Probing phonon dispersion relations of graphite by double resonance Raman scattering." Physical review letters 88.2 (2001): 027401.
[51] Malard, L. M., et al. "Probing the electronic structure of bilayer graphene by Raman scattering." Physical Review B 76.20 (2007): 201401.
[52] Piscanec, S., et al. "Kohn anomalies and electron-phonon interactions in graphite." Physical review letters 93.18 (2004): 185503.
[53] Kim, Kwanpyo, et al. "Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure." Physical review letters 108.24 (2012): 246103.
[54] Havener, Robin W., et al. "Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene." Nano letters 12.6 (2012): 3162-3167.
[55] James D. Plummer, M.D. Deal and P.B. Griffin, Silicon VLSI Technology–Fundamentals, Practice and Modeling, Pearson Educational International, 2000.
[56] Li, Xuesong, et al. "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper." Journal of the American Chemical Society 133.9 (2011): 2816-2819.
[57] Fang, Wenjing, et al. "Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition." ACS nano 8.6 (2014): 6491-6499.
[58] Lin, Yung-Chang, et al. "Graphene annealing: how clean can it be?." Nano letters 12.1 (2011): 414-419.
[59] Lin, Yung-Chang, et al. "Clean transfer of graphene for isolation and suspension." ACS nano 5.3 (2011): 2362-2368.
[60] Chan, Jack, et al. "Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition." ACS nano 6.4 (2012): 3224-3229.
[61] Yeh, Chao-Hui, et al. "High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers." Biosensors and Bioelectronics 77 (2016): 1008-1015.
[62] Yeh, Chao-Hui, et al. "Gigahertz flexible graphene transistors for microwave integrated circuits." ACS nano 8.8 (2014): 7663-7670.
[63] Lu, Chun-Chieh, et al. "High mobility flexible graphene field-effect transistors with self-healing gate dielectrics." Acs Nano 6.5 (2012): 4469-4474.
[64] Wang, Xinran, Scott M. Tabakman, and Hongjie Dai. "Atomic layer deposition of metal oxides on pristine and functionalized graphene." Journal of the American Chemical Society 130.26 (2008): 8152-8153.
[65] Kim, Seyoung, et al. "Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 dielectric." arXiv preprint arXiv:0901.2901 (2009).
[66] Du, Xu, et al. "Approaching ballistic transport in suspended graphene." Nature nanotechnology 3.8 (2008): 491-495.
[67] Sarma, S. Das, et al. "Electronic transport in two-dimensional graphene."Reviews of Modern Physics 83.2 (2011): 407.
[68] Young, Andrea F., and Philip Kim. "Quantum interference and Klein tunnelling in graphene heterojunctions." Nature Physics 5.3 (2009): 222-226.
[69] Klein, Oskar. "Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac." Zeitschrift für Physik 53.3-4 (1929): 157-165.
[70] Ando, Tsuneya, and Takeshi Nakanishi. "Impurity scattering in carbon nanotubes–absence of back scattering–." Journal of the Physical Society of Japan 67.5 (1998): 1704-1713.
[71] Landauer conductance and twisted boundary conditions for Dirac fermions in two space dimensions
[72] Tworzydło, J., et al. "Sub-Poissonian shot noise in graphene." Physical Review Letters 96.24 (2006): 246802.
[73] Miao, F., et al. "Phase-coherent transport in graphene quantum billiards."Science 317.5844 (2007): 1530-1533.
[74] Danneau, R., et al. "Shot noise in ballistic graphene." Physical review letters100.19 (2008): 196802.
[75] Hwang, E. H., and S. Das Sarma. "Screening-induced temperature-dependent transport in two-dimensional graphene." Physical Review B 79.16 (2009): 165404.
[76] Sarma, S. Das, and E. H. Hwang. "Density-dependent electrical conductivity in suspended graphene: Approaching the Dirac point in transport." Physical Review B 87.3 (2013): 035415.
[77] Leenaerts, O., B. Partoens, and F. M. Peeters. "Water on graphene: Hydrophobicity and dipole moment using density functional theory." Physical Review B 79.23 (2009): 235440.
[78] Chen, J-H., et al. "Charged-impurity scattering in graphene." Nature Physics4.5 (2008): 377-381.
[79] Ando, Tsuneya. "Screening effect and impurity scattering in monolayer graphene." Journal of the Physical Society of Japan 75.7 (2006): 074716.
[80] Newaz, A. K. M., et al. "Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment." Nature communications 3 (2012): 734.
[81] Kalon, Gopinadhan, et al. "The role of charge traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer graphene." Applied Physics Letters 99.8 (2011): 083109.
[82] Hwang, E. H., S. Adam, and S. Das Sarma. "Carrier transport in two-dimensional graphene layers." Physical Review Letters 98.18 (2007): 186806.
[83] Chen, Jian-Hao, et al. "Intrinsic and extrinsic performance limits of graphene devices on SiO2." Nature nanotechnology 3.4 (2008): 206-209.
[84] Martin, Jens, et al. "Observation of electron–hole puddles in graphene using a scanning single-electron transistor." Nature Physics 4.2 (2008): 144-148.
[85] Meyer, Jannik C., et al. "The structure of suspended graphene sheets." Nature446.7131 (2007): 60-63.
[86] Shih, Chih-Jen, et al. "Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility." Langmuir 28.22 (2012): 8579-8586.
[87] Wang, Han, et al. "Graphene frequency multipliers." Electron Device Letters, IEEE 30.5 (2009): 547-549.
[88] Zhang, Zhiyong, et al. "Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements."Applied Physics Letters 101.21 (2012): 213103.
[89] Moser, Joel, Amelia Barreiro, and Adrian Bachtold. "Current-induced cleaning of graphene." Applied Physics Letters 91.16 (2007): 163513.
[90] Xue, Jiamin, et al. "Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride." Nature materials 10.4 (2011): 282-285.
[91] Lafkioti, Myrsini, et al. "Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions." Nano letters 10.4 (2010): 1149-1153.
[92] Liu, Zihong, Ageeth A. Bol, and Wilfried Haensch. "Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers." Nano letters 11.2 (2011): 523-528.
[93] Mayorov, Alexander S., et al. "How close can one approach the Dirac point in graphene experimentally?." Nano letters 12.9 (2012): 4629-4634.
[94] Farmer, Damon B., et al. "Chemical doping and electron− hole conduction asymmetry in graphene devices." Nano letters 9.1 (2008): 388-392.
[95] Giovannetti, G. A. K. P. A., et al. "Doping graphene with metal contacts."Physical Review Letters 101.2 (2008): 026803.
[96] Hwang, E. H., and S. Das Sarma. "Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene." Physical Review B 77.11 (2008): 115449.
[97] Jang, C., et al. "Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short-and long-range potential scattering." Physical review letters 101.14 (2008): 146805.
[98] Sanfelix, P. Cabrera, et al. "The structure of water on the (0001) surface of graphite." Surface science 532 (2003): 166-172.
[99] Ishigami, Masa, et al. "Atomic structure of graphene on SiO2." Nano letters 7.6 (2007): 1643-1648.
[100] Fasolino, Annalisa, J. H. Los, and Mikhail I. Katsnelson. "Intrinsic ripples in graphene." Nature materials 6.11 (2007): 858-861.
[101] Katsnelson, M. I., and A. K. Geim. "Electron scattering on microscopic corrugations in graphene." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 366.1863 (2008): 195-204.
[102] Wang, Haomin, et al. "Hysteresis of electronic transport in graphene transistors." ACS nano 4.12 (2010): 7221-7228.
[103] Kim, Woong, et al. "Hysteresis caused by water molecules in carbon nanotube field-effect transistors." Nano Letters 3.2 (2003): 193-198.
[104] Cheng, Zengguang, et al. "Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices." Nano letters 11.2 (2011): 767-771.
[105] Zhang, Yuanbo, et al. "Direct observation of a widely tunable bandgap in bilayer graphene." Nature 459.7248 (2009): 820-823.
[106] Li, Song-Lin, et al. "Enhanced logic performance with semiconducting bilayer graphene channels." ACS nano 5.1 (2010): 500-506.