簡易檢索 / 詳目顯示

研究生: 賴冠良
Lai, Kuan-Liang
論文名稱: 溶劑輔助式壓印技術之研究
Surface patterning by solvent-assisted imprint lithography
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 溶劑輔助式壓印聚雙甲基矽氧烷聚甲基丙烯酸甲酯聚苯乙烯聚碳酸酯膨潤現象除潤現象擴散反應法多孔質陽極氧化鋁
外文關鍵詞: Solvent-assisted imprinting lithography, PDMS, PMMA, PS, PC, swelling, controlled dewetting, diffusion-reaction process, anodic porous alumina
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究重點為開發新型溶劑輔助式圖案轉移技術(solvent-assisted imprinting lithography),研究弱溶劑於軟性矽膠模具(PDMS)與高分子阻劑的膨潤及軟化特性,探討其成形機制,以低溫、低壓、快速且大面積化之特點,在高分子、金屬表面製作微奈米圖案,並結合電鍍、濕式蝕刻、陽極化等過程,製備各種具功能性之微結構,預期對於現今奈米壓印技術的突破具有極大助益。
    本研究利用軟性矽膠模具(PDMS)可微量吸收/釋放溶劑的特性,將膨潤狀態模具以0.001-0.01MPa 壓印於高分子塗層。溶劑分子由模具界面釋放軟化高分子塗層並使其具流動性填充模具成形,膨潤狀態(swelling)的高分子具有極佳成形性質,可成形微米至奈米等級的規則圖案,在此對於光柵圖案(pitch 277nm~1600nm)具有良好的複製成形特性,並可在低溫低壓環境進行大面積圖案轉移(5x5cm2)。接著引入氣體滲透薄膜蒸發(pervaporation)的概念,以厚度0.5-1mm之膜片式軟性模板為溶劑分子傳輸介質,藉此控制溶劑分子擴散並軟化極薄高分子層(<100nm),軟性膜片可藉凡得瓦力完整貼合試片表面,高分子塗層在溶劑蒸氣環境下,可控制模具膨潤比為1.05,避免模具變形,且藉調整塗層厚度製作無殘餘層高分子圖案,以利後續蝕刻製作矽模具及選擇性電鍍鎳金屬於導電基板。由於PDMS膜片具良好的可撓性,以溶劑輔助方式可成功於曲面基板轉印奈米圖案,相較於熱壓印製程原理上的限制,局部膨潤軟化機制可用於二次壓印圖案疊加。
    本研究亦利用PS薄膜在丙酮溶劑下的除潤現象,於壓印高分子微米圖案的表面,藉由丙酮處理使連續圖案選區除潤縮合成規則PS球狀排列,並控制壓印圖案之殘餘層厚度,製作規則且具層級結構的高分子球狀陣列,更進一步製作圖案間距277nm及555nm的點狀圖案,經丙酮處理後可分別得到規則的奈米PS光子晶體排列。
    最後利用擴散反應機制(reaction-diffusion) 結合溶劑輔助壓印製程,提出一新穎鋁表面圖案化方法,以混合有機溶劑與微量蝕刻液,由軟性模板擴散並在模版及金屬界面反應,於金屬表面選擇性蝕刻形成規則圖案,再經陽極化製程導引圖案成長規則氧化鋁奈米孔洞。以此模具輔助化學蝕刻法,分別以不同尺寸之光柵圖案模具(277、420及555 nm)調整二次圖案疊加角度(30°、60° 及90°),可於鋁表面製作規則凹坑導引氧化鋁孔洞成長,並調整陽極化電壓控制孔洞間距,以探討預圖案對於孔洞成長行為之影響。

    The rapid and effective pattern transfer method would be empolyed by the solvent-assisted imprinting lithography. Polymethylmethacrylate (PMMA) and ethyl alcohol (EtOH) are chosen for demonstrating a solvent-assisted imprint process working at room temperature and low pressure (0.001~0.01 MPa) with a soft mold. The poor solvents (such as EtOH, acetone and THF) cause a physical swelling reaction for both the PDMS mold and polymer resist (such as PMMA, PS and PC). The swollen PMMA gel has excellent filling capability for applying in imprinting lithography. During imprinting process, the PDMS mold absorbs the poor solvent from the resist, which deswells the polymer gel and helps pattern setting. This method can be applied extensively for micro-nanolithography and plastics industry to prepare micron-nanometer scale structures. Besides, by controlling the imprinting conditions, the residual-layer-free pattern through the polymer dewetting effect could be obtained.
    The solvent vapor-assisted imprinting lithography (SVAIL) using the flexible PDMS membrane mold (0.5-1 mm thickness) as a solvent transport medium in a vapor environment has also been demonstrated. By adjusting the solvent vapor pressure and temperature, the transport mechanism provides the sufficient solvent to soften the thin polystyrene resist (<100 nm) and avoids the unexpected deformation of imprinted nanopatterns. The idea shows the potential of SVAIL for large-area pattern (5x5 cm2) without any external loading. The residual-layer-free pattern can be obtained through the SAVIL because of the ultra thin coated polymer films. The multiple imprinting has been performed to obtain 2D hierarchical structures using simple 1D stripe patterned stamps. To combine this method with wet etching process and metal electrodeposition, the Si grating and Ni pattern can be fabricated.
    A controlled dewetting process for fabricating an ordered nanostructure on a polymer thin film is demonstrated. Uniform PS pattern can be fabricated at room temperature and low pressure (0.01MPa) by a solvent-assisted method. The imprinted PS microlens have marked change in morphology from dome to sphere because spinodal dewetting effects after acetone treatment. By adjusting thickness of the residual layer between imprinted domes, the self-organization PS sphere arrays with multiple sizes can be fabricated. Furthermore, the sub-micrometer PS pre-pattern can be turned into photonic crystal arrays with 555 nm pitch by dewetting process.
    A simple and cost-effective method for creating patterned nanoindentations on Al surface via a mold-assisted chemical etching process has been carried out. This study shows a reaction-diffusion method which formed nanoscale shallow etch pits (25 nm deep) by the absorption/liberation behavior of etchant in PDMS stamp. After anodization, we can get the ordered nanopore arrays with 277 nm pitch that are guided by the prepatterned etch pits. The proposed method can also find applications in other metals and semiconductors for preparing ordered nanopore or nanochannel arrays through pretexturing.

    總目錄 中文摘要 I 英文摘要 III 總目錄 VI 表目錄 IX 圖目錄 X 中英名詞與符號對照表 XVIII 第一章 緒論 1 1-1 引言 1 1-2 實驗動機與目的 3 第二章 理論基礎 4 2-1 壓印技術發展現況 4 2-2 軟性矽膠之性質及應用 11 2-3 高分子對於有機溶劑的吸收及膨潤行為 13 2-3-1 溶解度參數理論(solubility parameter theory) 14 2-3-2 高分子膨潤軟化效應 16 2-4 薄膜滲透蒸發技術 18 2-4-1 滲透蒸發簡介 18 2-4-2 蒸氣透過原理 19 2-5 多孔質陽極氧化鋁成長機制及其規則化成長製程 20 2-5-1 多孔質陽極化氧化鋁簡介 20 2-5-2 多孔質陽極化氧化鋁形態 20 2-5-3 多孔質陽極化氧化鋁成長機制 21 2-5-4 自組裝鋁金屬陽極化反應 25 2-6 成長規則化陽極氧化鋁發展近況 25 2-7 模具輔助化學蝕刻 (反應擴散法) 29 第三章 實驗方法與步驟 32 3-1 實驗流程 32 3-2 實驗設備 32 3-3 實驗材料選擇 34 3-4 實驗步驟 35 3-4-1 PDMS模具製備 35 3-4-2 高分子薄膜塗佈 36 3-4-3 溶劑輔助式壓印 37 3-4-4 蒸氣輔助式壓印 37 3-4-5 模具輔助化學蝕刻 (反應擴散法) 38 3-4-6 鋁陽極化製程 38 3-5 實驗分析 39 第四章 溶劑輔助法用於高分子成形之研究 40 4-1 前言 40 4-2 溶劑選擇對高分子阻劑及PDMS模具膨潤/去膨潤行為的影響 41 4-2-1 不同溶劑對高分子的膨潤及溶解行為 41 4-2-2 不同溶劑對PDMS膨潤/去膨潤行為之影響 44 4-3 溶劑傳送方式對製程的影響 48 4-4 蒸氣輔助膜片式壓印 53 4-4-1 溶劑氣體對PDMS膜片吸收之影響 53 4-4-2 高分子成形圖案分析 56 4-5 無殘餘層壓印及基板圖案轉移 58 4-5-1 PMMA無殘餘層圖案壓印及濕式蝕刻製作矽基板光柵圖案 58 4-5-2 沉積鎳金屬圖案 63 4-6 曲面壓印成形 65 4-7 二次壓印圖案疊加 67 第五章 溶劑誘導PS高分子薄膜除潤現象及圖案規則化之探討 71 5-1 前言 71 5-2 丙酮溶劑除潤處理反應時間對PS薄膜形態的影響 72 5-3 溶劑輔助式壓印製備PS高分子圖案 76 5-4 丙酮溶劑除潤處理對PS規則圖案變化的影響 79 5-5 丙酮引導次微米尺寸圖形除潤處理 84 第六章 反應擴散法製作鋁表面圖案及成長規則多孔質陽極氧化鋁 86 6-1 前言 86 6-2 反應擴散濕式印章法於鋁基板上製作微圖案 86 6-3 蝕刻液濃度對轉印鋁圖案完整性的影響 89 6-4 鋁表面預圖案導引陽極氧化鋁孔洞成長 91 6-4-1 一維光柵圖案導引 91 6-4-2 二維點狀圖案導引孔洞成長 91 6-5 二次壓印製作二維圖案 92 6-6鋁圖案形貌尺寸及陽極化電壓對氧化鋁孔洞成長之影響 94 第七章 總結論 102 參考文獻 104

    [1] S. Y. Chou, P. R. Krauss, and P .J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett., 67, p.3114-3116, 1995.
    [2]Y. N. Xia, G. M. Whitesides, “Soft Lithography”, Annual Review of Materials Science, 28, p.153-184, 1998.
    [3] C.G. Willson,M.E. Colbum,United States Patent,6.334.960, 2002
    [4] D.Y. Khang, H. H. Lee, “ Room-temperature imprint by solvent vapor treatment”, Appl. Phys. Lett. 76, p.870-872, 2000
    [5] F. Keller, “Structural features of oxide coatings on aluminum”, J. Electrochem. Soc., 100, p.411-419, 1953
    [6] D. Almawlawi, K. A. Bosnick, A. Osika, M. Moskovits, “Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks”, Advanced Materials, 12, 1252-1257, 2000
    [7] W. Lee, R. Ji, U. Gosele, K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization”, Nature Materials, 5, p.741-747, 2006
    [8] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, J. Masuda, “Conditions for
    fabrication of ideally ordered anodic porous alumina using pretextured Al”, J. Electrochem. Soc., 148, B152-B156, 2001
    [9] K. Pfeiffer, A. Fink, G. Gruetzner, G. Bleidiessel, H. Schulz, and H. Scheer, “Multistep profiles by mix and match of nanoimprint and UV lithography”, Microelectronic Engineering, 57, p.381–387, 2001
    [10] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, Journal of Vacuum Science and Technology B, 17, p.2965-2969, 1999.
    [11] G. Aumiller, Ea. Chandros, W.J. Tomlinso and H.P.Weber, ”Submicrometer resolution replication of relief patterns for integrated optics”, J. Appl. Phys., 45, p.4557–4562,1974
    [12] Enoch Kim, Younan Xia, X. M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers”, Advanced Materials , 9, p.651-654, 1997
    [13] N. E. Voicu, S. Ludwigs, E. J. W. Crossland, P. Andrew, and U. Steiner, “Solvent-Vapor-Assisted Imprint Lithography”, Advanced Materials, 19, p.757–761, 2007.
    [14] S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, 417, p. 835-837, 2002.
    [15] Y. S. Kim, K. Y. Suh, H. H. Lee. “Fabrication of three-dimensional microstructures by soft molding. “ Appl Phys Lett, 79, p.2285-2287, 2001
    [16] J. Bicerano, Prediction of Polymer Properties 2nd ed (New York: Dekker), 1996
    [17] Y. Berdichevsky, J. Khandurina, A. Guttman and Y.-H. Lo, “UV/ozone Modification of Poly(dimethylsiloxane) Microfluidic Channels,” Sensors and Actuators B 97, p.402-408, 2004.
    [18] E. Favre, “Swelling of crosslinked polydimethylsiloxane networks by pure solvents: influence of temperature” Eur. Polym. J. 32, p.1183–1188, 1996
    [19] Y. Du, Y. Xue and H. L. Frisch, In Physical Properties of Polymers Handbook ,edited by J. E.Mark (Woodbury, NY: AIP),1996
    [20] J. N. Lee, C. Park and G. M. Whitesides, “Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices”, Anal. Chem., 75, p.6544–6554, 2003
    [21] F. W. Billmeyer, Jr., Textbook of Polymer Science (John Wiley & Sons, Inc., New York, 1970
    [22] R. Xie, A. Karim, J. F. Douglas, C. C. Han and R. A. Weiss , “Spinodal Dewetting of Thin Polymer Films”, Phys. Rev. Lett. 81, p.1251–1254,1998
    [23] R. B. Xing, C. X. Luo and Z. Wang, “Dewetting of polymethyl methacrylate on the patterned elastomer substrate by solvent vapor treatment ”, Polymer 48, p.3574–3583, 2007
    [24] A. Sharma and G. Reiter,”Instability of thin polymer films on coated substrates”, J. Colloid Interface Sci. 178, 383–399,1996
    [25] D. W. Van Krevelen, Properties of Polymers, 3rd ed. Elsevier, Amsterdam, 1990.
    [26] R. Y. M. Huang , Membrane Science and Technology Series 1, Pervaporation Membrane Separation Process, Elsevier, Amsterdam, 1991.
    [27] R. Rautenbach, and R. Albrecht, “The separation potential of pervaporation - Part 1, discussion of transport equations and comparison with reverse osmosis,” J. Membr. Sci., 25, p.1–23, 1985.
    [28] P. A. Kober, “Pervaporation, perstillation and percrystallization,” J. Amer. Chem. Soc., 39, p. 944, 1917.
    [29] E. G. Heisler, A. S. hunter, J. Siciliano and R. H. Readway, “Solute and temperature effects in the pervaporation of aqueous alcoholic solution”, Science, 124 , 1956.
    [30] I. Blume, P.J.F. Schwering, M.H.V. Mulder, C.A. Smolders, “Vapour sorption and permeation properties of poly (dimethylsiloxane) films”, Journal of Membrane Science, 61, p.85-97, 1991.
    [31] S.S. Dhingra, Mixed gas transport study through polymeric membranes:
    a novel technique, PhD Thesis, Department of Chemical Engineering, Virginia Polytechnic Institute and State University, USA, 1997,.
    [32] J. P. O. Sullivan, “The morphology and mechanism of formation of porous anodic films on aluminum”, Proceedings: Biological Sciences, 317, p.511-543, 1970.
    [33] H. Masuda, F. Hasegwa, S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution”, Journal of The Electrochemical Society, 144, L127-L130, 1997.
    [34] H. Masuda, K. Yada, A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Soluiton”, Japanese Journal of Applied Physics, 37, p.L1340-L1342, 1998.
    [35] V. P. Parkhutik, “Theoretical modelling of porous oxide growth on aluminium”, Journal of Physics D: Applied Physics, 25, p.1258-1263, 1992
    [36] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina”, Journal of Applied Physics, 84, p.6023-6026, 1998
    [37] H. Masuda, and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466, 1995.
    [38] H. Masuda, H. Yamada, M. Satoh, and H. Asoh , “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71, 10, 1997
    [39] N.W. Liu, A. Datta, C Y. Liu, and Y L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays,”Appl. Phys. Lett. 82, 1281,2003.
    [40] C.Y. Liu, A. Datta, and Y.L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,”Appl. Phys. Lett. ,78 , 120, 2001.
    [41] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett.,78, 826, 2001
    [42] H. Asoh, S. Ono, T. Hirose, I. Takatori and H. Masuda, “Detailed Observation of Cell Junction in Anodic Porous Alumina with Square Cells Anodization”, Japan. J. Appl. Phys. 43, p.6342-6346, 2004
    [43] I. Mikulskas, S. Juodkazis , R. Tomasiumas , J.G. Dumas ,”Aluminium oxide photonic crystals grown by a new hybrid method., Adv. Mater.,13, 1574, 2001.
    [44] H. Masuda, K. Kanezawa, and K. Nishio, “Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope,” Chem. Lett. 1218, 2002
    [45] S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. A. Ozin, “Highly ordered nanosphere imprinted nanochannel alumina (NINA),” Adv. Mater. 16, 2193, 2004
    [46] H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto, and K. Nishio, “Fabrication of highly ordered anodic porous alumina using self-organized polystyrene particle array,” Chem. Lett. 33, 584, 2004
    [47] B. Kim, S. Park, T. J. McCarthy, T. P. Russel, “Fabrication of Ordered Anodic Aluminum Oxide Using a Solvent-Induced Array of Block-Copolymer Micelles.”, Small, 3, 1869. , 2007
    [48] X. Zhao, P. Jiang , S. Xie , J. Feng, Y. Gao, J. Wang, D. Liu, L. Song, L. Liu, X. Dou, X. Luo, Z. Zhang, Y. Xiang, W. Zhou, F. Wang,”Patterned anodic aluminium oxide fabricated with a Ta mask.”, Nanotechnology, 17, 35, 2006
    [49] T. S. Kustandi, W. W. Loh, H. Gao, H.Y. Low, “Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography.” ACS Nano, 5, 2561, 2010
    [50] M. E. Nasir, D.W.E. Allsopp, C.R. Bowen, G. Hubbard, K.P. Parsons, “The fabrication of mono-domain highly ordered nanoporous alumina on a wafer scale by a guided electric field. “, Nanotechnology, 21, 105303, 2010
    [51] B.A. Grzybowski, K.J.M. Bishop, “Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel stamps. “, Small, 5, 22, 2009.
    [52] B.A. Grzybowski, K.J.M. Bishop, C.J. Campbell, M. Fialkowski, S. K. Smoukov, “Microand nanotechnology via reaction-diffusion. “ Soft Matter, 1,114, 2005
    [53] S.K. Smoukov, B.A. Grzybowski, “Maskless Microetching of Transparent Conductive Oxides (ITO and ZnO) and Semiconductors (GaAs) Based on Reaction-Diffusion.”Chem Mater, 18, 4722, 2006
    [54] J. Narasimhan and I. Papautsky, J. Micromech. Microeng.,14, p.96–103, 2004
    [55] L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Advanced Materials, 19, pp. 495-513, 2007.
    [56] L. J. Guo, “Recent progress in nanoimprint technology and its applications ”, Journal of Physics D - Applied Physics, 37, pp. R123-R141, 2004.
    [57] Schift Helmut, “Nanoimprint lithography: An old story in modern times? A review”, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 26, 2, p. 458-480, 2008
    [58] K.Y. Suh; H.H. Lee, “Capillary force lithography: Large-area patterning, self-organization, and anisotropic dewetting”ADVANCED FUNCTIONAL MATERIALS , 12, 6-7 , p.405-413
    [59] D.Y. Khang, H. Yoon, H. H. Lee, “Room-temperature imprint lithography”, Adv. Mater. 13(10), 749-751, 2001
    [60] D. Khang, H. Kang, T. Kim, and H. Lee, “ Low-Pressure Nanoimprint Lithography ,” Nano Lett., Vol. 4, No. 4, pp.633-637, 2004.
    [61] X. Cheng, L. J. Guo, and P. F. Fu, “Room-temperature, low-pressure nanoimprinting based on cationic photopolymerization of novel epoxysilicone monomers,” Advanced Materials 17, p.1419-1424, 2005.
    [62] P. J. Yoo, K. T. Nam, A. M. Belcher and P. T. Hammond, “Solvent-Assisted Patterning of Polyelectrolyte Multilayers and Selective Deposition of Virus Assemblies”, Nano Letters 8(4), p.1081, 2008.
    [63] B. Zdyrko, O. Hoy, M. K. Kinnan, G. Chumanov, I. Luzinov, “Nano-patterning with polymer brushes via solvent-assisted polymer grafting.” Soft Matter, 4 (11), p.2213-2219, 2008.
    [64] C. Chu, G. N. Parsons, ”Solvent enhanced resist flow for room temperature imprint lithography.”, J Vac Sci Technol B, 24,p.818-822, 2006.
    [65] K. L. Lai, I. C. Leu, and M. H. Hon, “Soft imprint lithography using swelling/ deswelling characteristics of polymer mold and resist induced by poor solvent”, J. Micromech. Microeng., 19, 037001, 2009.
    [66] K. L. Lai, M. H. Hon and I. C. Leu, “Pattern formation on polymer resist by solvent-assisted nanoimprinting with PDMS mold as a solvent transport medium”, J. Micromech. Microeng., 21, 075013, 2011.
    [67] L. L. Han, J. Zhou and X. Gong, “Solvent-assisted polymer micro-molding. “, Chinese Sci. Bull., 54, p.2193-2204, 2009
    [68] G. Reiter, “Unstable thin polymer films: rupture and dewetting processes,” Langmuir, 9, p.1344-1351, 1993.
    [69] A. Faldi, R.J. Composto, and K.I. Winey, “Unstable polymer bilayers .1. Morphology of dewetting, “ Langmuir, 11, p. 4855-4861, 1995.
    [70] P. Izák, Š. Hovorka, T. Bartovský, L. Bartovská, J. G. Crespo, “Swelling kinetics of polymeric membranes in ionic liquids”, Journal of Membrane Science, 296, p.131–138, 2007.
    [71] 張家維,溶劑輔助滾輪壓印及金屬圖形轉印製程,國立成功大學材料科學及工程學系,碩士論文。
    [72] K. E. Paul, M. Prentiss, and G. M. Whitesides, “Patterning Spherical Surfaces at the Two-Hundred-Nanometer Scale Using Soft Lithography,” Adv. Funct. Mater., 13(4), p. 259-263, 2003.
    [73] W. M. Choi and O. O. Park, “The fabrication of submicron patterns on curved substrates using a polydimethylsiloxane film mould,” Nanotechnology, 15, p.1767-1770, 2004.
    [74] R. Mukherjee, G. K. Patil, A. Sharma, “Solvent Vapor-Assisted Imprinting of Polymer Films Coated on Curved Surfaces with Flexible PVA Stamps”, Industrial & Engineering Chemistry Research, 48, pp.8812-8818, 2009
    [75] D. Simmons, A. Chauhan, “Influence of physical and chemical heterogeneity shape on thin film rupture. “ J. Colloid Interface Sci., 295, p.472–481, 2006
    [76] A.M. Higgins, R.A.L. Jones, “Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces”, Nature, 404, p.476–478, 2000
    [77] X. Zhang, F. Xie, O.K.C. Tsui, “Microscopic Surface Patterning by Rubbing Induced Dewetting” Polymer, 46, p.8416–8421,2005
    [78] C. Luo, R. Xing, Y. Han, “Ordered Pattern Formation from Dewetting of Polymer Thin Film with Surface Disturbance by Capillary Force Lithography”, Surf. Sci. 552, p.139–148, 2004
    [79] R. Yerushalmi-Rozen, T. Kerle and J. Klein: “Alternative Dewetting Pathways of Thin Liquid Films” Science, 285, 1254,1999
    [80] K. Y. Suh and H. H. Lee, “Anistropic hole formation in thin polymer films confined by walls”, J. Chem. Phys., 115, p.8204-8208, 2001
    [81] M. Cavallini, M. Facchini, M. Massi, F. Biscarini, “Bottom–up nanofabrication of materials for organic electronics”, Synthetic Metals 146, p.283–286, 2004
    [82] M. Gonuguntla, A. Sharma, R. Mukherjee, S. A. Subramanian, “Control of self-organized contact instability and patterning in soft elastic films.”, Langmuir 22, p.7066-7071, 2006
    [83] E. Mayer, H.-G. Braun, “Controlled dewetting processes on microstructured surfaces – a new procedure for thin film microstructuring”, Macromol. Mater. Eng. 276/277, p.44–50, 2000
    [84] K. Kargupta and A. Sharma, “Dewetting of Thin Films on Periodic Physically and Chemically Patterned Surfaces”, Langmuir, 18, p.1893-1903, 2002
    [85] Z. Zhang, Z. Wang, R. Xing, Y. Han , “How to form regular polymer microstructures by surface-pattern-directed dewetting”, Surface Science, 539, p.129-136, 2003
    [86] K. Kargupta and A. Sharma, “Mesopatterning of Thin Liquid Films by Templating on Chemically Patterned Complex Substrates”, Langmuir, 19, p.5153-5163, 2003.
    [87] C. Luo, R. Xing,Z. Zhang, J. Fu, Y. Han, “Ordered droplet formation by thin polymer film dewetting on a stripe-patterned substrate”, Journal of Colloid and Interface Science, 269, p.158–163, 2004.
    [88] S. Harkema, E. Schäffer, M. Morariu and U. Steiner, “Pattern Replication by Confined Dewetting” Langmuir, 19, p.9714-9718, 2003
    [89] A. Sehgal, V. Ferreiro, J. F. Douglas, E. J. Amis, A. Karim, “Pattern-Directed Dewetting of Ultrathin Polymer Films”, Langmuir, 18, p.7041-7048, 2002
    [90] D. Julthongpiput, W. Zhang, J. F. Douglas, A. Karim, M. J. Fasolka, “Pattern-directed to isotropic dewetting transition in polymer films on micropatterned surfaces with differential surface energy contrast”, Soft Matter, 3, p. 613–618, 2007
    [91] K. Y. Suh and H. H. Lee, “Self-Organized Polymeric Microstructures”
    Adv. Mater., 14, 5, p.346-351, 2002
    [92] G..E. Thompson and G.C. Wood, “Corrosion:Aqueous process and passive films,”Treatise on Materials Science and Technology 23, Chap.5, Academic Press Inc.(London) Ltd., 1983

    無法下載圖示 校內:2017-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE