簡易檢索 / 詳目顯示

研究生: 林高田
Lin, Kao-Tein
論文名稱: 藉由去氧核糖核酸酶ll去調控線蟲的先天免疫反應
Regulation of innate immune response by DNase II in C. elegans
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 先天免疫線蟲DNase II胞質核酸感應系統
外文關鍵詞: Innate immune, C. elegans, DNase II, cytosolic nucleic acid sensing system
相關次數: 點閱:401下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先天免疫系統是一個古老且高度保留的免疫抵禦機制,其提供抵禦病原菌的第一道防線。因為線蟲並沒有後天免疫 (adapted immunity)系統,所以提供了一個很好的平台去研究先天免疫,也可讓我們研究特定基因如何參與病原菌的抵禦機制。根據先前的研究,先天免疫會被病毒或是細菌之病原相關分子標誌(PAMPs)以及非病原菌因子之損害相關分子標誌(DAMPs)所活化。不管是病原相關分子標誌還是非病原菌因子,DNA都是一種可以活化先天免疫反應的常見物質。然而,對於DNA如何被細胞偵測並且參與先天免疫系統的活化的了解還是很少。這裡我們發現一個線蟲之DNase II似乎扮演了調控先天免疫的角色。我們初步的結果顯示,在線蟲中跟人類DNase II-alpha的同源基因為crn-7,且其突變株對於病原菌有較高的抵抗能力。我們也發現crn-7的突變株有較高的先天免疫能力而且可能跟細胞質核酸感應系統有關。總結而言,在這邊我們提供了一個很好的活體動物模式去研究胞質核酸感應系統如何被病原相關分子標誌及損害相關分子標誌所活化。

    Innate immune system is an ancient and evolutionarily conserved defense mechanism and provides the first line of defense against pathogens. C. elegans provides powerful platforms for studying the function of innate immunity and a specific gene to protect the host from infection. According to previous studies, innate immunity is stimulated not only by viral or bacterial components (pathogen-associated molecular patterns, PAMPs), but also by non-microbial danger signals (damage-associated molecular patterns, DAMPs). However, the knowledge of how the cytosolic DNA, a potential PAMP or DAMP, can be sensed is still limited. Here, we showed a DNase II play an important role in the regulation of innate immunity in C. elegans. Our preliminary results indicated that the deficiency of a DNase II, Crn-7, in C. elegans enhances the innate immune responses against several bacterial pathogens. Furthermore, the cytosolic nucleic acid sensing system could be, partlly, the downstream signal of this enhanced immune response. In sum, we have established an in vivo model for studying the pathogen- or damage-associated cytosolic DNA recognition.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 縮寫表 VII 第一章 緒論 1 研究動機 6 第二章 材料與方法 7 2-1 線蟲品系的培養與準備 7 2-2 細菌與質體的品系與培養 8 2-3 勝任細胞的製備 8 2-4 細菌的轉形 9 2-5 沙門氏桿菌培養皿毒性測試 9 2-6 線蟲生理的測試 9 2-7 沙門氏桿菌與大腸桿菌OP50-混菌與熱毒殺實驗 10 2-8 金黃色葡萄球菌和出血性大腸桿菌培養皿毒性測試 11 2-9 Cry5B培養皿毒性測試. 11 2-10 CuSO4 毒殺線蟲分析 11 2-11 線蟲熱壓力測試 12 2-12 RNAi 抑制 培養皿毒性測試 12 2-13 影像呈現 13 2-14 藥品配方 13 第三章 實驗結果 16 3-1 沙門氏桿菌可以毒殺線蟲 16 3-2 沙門氏桿菌對線蟲的影響 17 3-3 野生型N2餵食S. typhimurium LT2後的死亡非營養缺乏所致 17 3-4 S. typhimurium LT2會寄殖(colonization)在線蟲的腸道中並毒殺線蟲 19 3-5 Caspase-3 和Toll-like receptors 未參與在S. typhimurium LT2毒殺線蟲 20 3-6 CRN-7的缺失會使線蟲對S. typhimurium LT2較有抵抗能力 21 3-7 CRN-7是一個免疫負調控因子 22 3-8 CRN-7所調控的先天免疫對病原菌有專一性的情況 23 3-9 EYA-1可能是CRN-7的下游訊號分子 23 3-10 CRN-7與其他下游分子機制 24 4-1 S. typhimurium LT2是否會侵入線蟲腸細胞 27 4-2線蟲生理變化的探討 27 4-3 CED-3及TOL-1在線蟲中所扮演的角色 28 4-4 CRN-7在線蟲中所扮演的角色 29 4-5 DNase II其下游訊號傳遞分子EYA 31 4-6 CRN-7其他下游訊號傳遞分子 32 4-7結論與未來方向 32 參考文獻 34 實驗結果圖表 39 自述 66

    1. Jia, K., et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106, 14564-14569 (2009).
    2. Greene, S.K., et al. Distribution of multidrug-resistant human isolates of MDR-ACSSuT Salmonella Typhimurium and MDR-AmpC Salmonella Newport in the United States, 2003-2005. Foodborne Pathog Dis 5, 669-680 (2008).
    3. Targant, H., et al. Characterization of resistance genes in multidrug-resistant Salmonella enterica serotype Typhimurium isolated from diseased cattle in France (2002 to 2007). Foodborne Pathog Dis 7, 419-425 (2010).
    4. Hughes, M.K., et al. Reduction of multidrug-resistant and drug-susceptible Salmonella in ground beef and freshly harvested beef briskets after exposure to commonly used industry antimicrobial interventions. J Food Prot 73, 1231-1237 (2010).
    5. Maki, D.G. Coming to grips with foodborne infection--peanut butter, peppers, and nationwide salmonella outbreaks. N Engl J Med 360, 949-953 (2009).
    6. Voetsch, A.C., et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38 Suppl 3, S127-134 (2004).
    7. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71 (1974).
    8. Brenner, S. In the Beginning Was the Worm . . . Genetics (2009).
    9. Ewbank, J.J. & Zugasti, O. C. elegans: model host and tool for antimicrobial drug discovery. Disease Models & Mechanisms 4, 300-304 (2011).
    10. Hsu, A.L. Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science 300, 1142-1145 (2003).
    11. Adams, B., et al. Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control 37, 32-49 (2006).
    12. Waterfield, N.R. & Wren, B.W. Invertebrates as a source of emerging human pathogens. Nature Reviews Microbiology 2, 833-841 (2004).
    13. Irazoqui, J.E., Urbach, J.M. & Ausubel, F.M. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology 10, 47-58 (2010).
    14. Mylonakis, E. & Aballay, A. Worms and Flies as Genetically Tractable Animal Models To Study Host-Pathogen Interactions. Infection and Immunity 73, 3833-3841 (2005).
    15. Kurz, C.L. & Ewbank, J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nature Reviews Genetics 4, 380-390 (2003).
    16. Kurz, C.L. & Ewbank, J.J. Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol 8, 142-144 (2000).
    17. Aballay, A. & Ausubel, F.M. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol 5, 97-101 (2002).
    18. Mahajan-Miklos, S., Rahme, L.G. & Ausubel, F.M. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37, 981-988 (2000).
    19. Mahajan-Miklos, S., Tan, M.W., Rahme, L.G. & Ausubel, F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47-56 (1999).
    20. Tan, M.W., Rahme, L.G., Sternberg, J.A., Tompkins, R.G. & Ausubel, F.M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96, 2408-2413 (1999).
    21. Tan, M.W., Mahajan-Miklos, S. & Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96, 715-720 (1999).
    22. Ewbank, J.J. Signaling in the immune response. WormBook, 1-12 (2006).
    23. Shizuo Akira, K.T.T.K. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology 2, 675-680 (2001).
    24. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11, 373-384 (2010).
    25. Janeway, C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1, 1-13 (1989).
    26. Kawane, K., et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998-1002 (2006).
    27. Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Nucleic Acid Recognition by the Innate Immune System. Annual Review of Immunology 29, 185-214 (2011).
    28. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity. Cell 134, 587-598 (2008).
    29. Kawane, K., et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nature Immunology 4, 138-144 (2003).
    30. Okabe, Y. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. Journal of Experimental Medicine 202, 1333-1339 (2005).
    31. Okabe, Y., Sano, T. & Nagata, S. Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460, 520-524 (2009).
    32. Barber, G.N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Current Opinion in Immunology 23, 10-20 (2011).
    33. Yanai, H., Savitsky, D., Tamura, T. & Taniguchi, T. Regulation of the cytosolic DNA-sensing system in innate immunity: a current view. Current Opinion in Immunology 21, 17-22 (2009).
    34. Sander, L.E. & Blander, J.M. Innate Immune Cells Cast an Eye on DNA. Journal of Molecular Cell Biology 1, 77-79 (2009).
    35. Wu, Y.C., Stanfield, G.M. & Horvitz, H.R. NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev 14, 536-548 (2000).
    36. Counis, M.-F. & Torriglia, A. Acid DNases and their interest among apoptotic endonucleases. Biochimie 88, 1851-1858 (2006).
    37. Lai, H.J., Lo, S.J., Kage-Nakadai, E., Mitani, S. & Xue, D. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic dna degradation and development. PLoS One 4, e7348 (2009).
    38. Gravato-Nobre, M.J. & Hodgkin, J. Microbial Interactions with Caenorhabditis elegans: Lessons from a Model Organism. 65-90 (2011).
    39. McClelland, M., et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852-856 (2001).
    40. Marroquin, L.D., Elyassnia, D., Griffitts, J.S., Feitelson, J.S. & Aroian, R.V. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155, 1693-1699 (2000).
    41. Griffitts, J.S., et al. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. Journal of Biological Chemistry 278, 45594 (2003).
    42. Pujol, N., et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11, 809-821 (2001).
    43. Couillault, C. & Ewbank, J.J. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70, 4705-4707 (2002).
    44. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802 (1994).
    45. Troemel, E.R. New models of microsporidiosis: infections in Zebrafish, C. elegans, and honey bee. PLoS Pathog 7, e1001243 (2011).
    46. Tenor, J.L., McCormick, B.A., Ausubel, F.M. & Aballay, A. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Curr Biol 14, 1018-1024 (2004).
    47. Srikanth, C.V., et al. Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3. Science 330, 390-393 (2010).
    48. Arpaia, N., et al. TLR Signaling Is Required for Salmonella typhimurium Virulence. Cell 144, 675-688 (2011).
    49. Charrel-Dennis, M., et al. TLR-independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA. Cell Host Microbe 4, 543-554 (2008).
    50. Monroe, K.M., McWhirter, S.M. & Vance, R.E. Induction of type I interferons by bacteria. Cell Microbiol 12, 881-890 (2010).
    51. Muruve, D.A., et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103-107 (2008).
    52. Takaoka, A. & Taniguchi, T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 60, 847-857 (2008).
    53. Seth, R.B., Sun, L. & Chen, Z.J. Antiviral innate immunity pathways. Cell Res 16, 141-147 (2006).
    54. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ 13, 816-825 (2006).
    55. Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576-591 (2009).
    56. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252 (2000).
    57. Iordanov, M.S., et al. Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol Cell Biol 20, 617-627 (2000).
    58. Yang, P., et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nature Immunology 11, 487-494 (2010).
    59. Zhang, X., et al. Cutting Edge: Ku70 Is a Novel Cytosolic DNA Sensor That Induces Type III Rather Than Type I IFN. The Journal of Immunology 186, 4541-4545 (2011).
    60. Kim, D.H., et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623-626 (2002).
    61. Engelmann, I. & Pujol, N. Innate immunity in C. elegans. Adv Exp Med Biol 708, 105-121 (2010).
    62. Endt, K., et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6(2010).
    63. Aravind, L., Dixit, V.M. & Koonin, E.V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279-1284 (2001).
    64. Bowen, N.J. & McDonald, J.F. Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res 9, 924-935 (1999).
    65. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11, 1005-1013 (2010).
    66. Torres, A.G. & Kaper, J.B. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect Immun 71, 4985-4995 (2003).
    67. Jemc, J. & Rebay, I. The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu Rev Biochem 76, 513-538 (2007).
    68. Hirose, T., Galvin, B.D. & Horvitz, H.R. Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 107, 15479-15484 (2010).

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE