簡易檢索 / 詳目顯示

研究生: 朱小瓀
chu, Hsiao-Ju
論文名稱: 探討NDPK-A 與eEF1Bα的交互作用
An interaction of NDP kinase A/NM23-H1 with eEF1Bα elongation factor
指導教授: 張玲
Chang, Christina Ling
蘇五洲
Su, Wu-Chou
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 腫瘤轉移轉譯延長核苷二磷酸激酶A
外文關鍵詞: Translation elongation, Nucleoside diphosphate kinase A, Metastasis, NM23-H1
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤轉移是一個複雜且多步驟連續性的主動的過程,腫瘤細胞從原發
    腫瘤向遠端器官擴散及其隨後的生長而導致腫瘤的擴散。NM23-H1 最初
    是在乳癌等腫瘤中發現是一個腫瘤轉移抑制基因(metastasis suppressor
    gene),其所轉錄轉譯成的蛋白質是核苷二磷酸激酶A(nucleoside
    diphosphate kinase A, NDPK-A)。然而,在神經母細胞瘤和其他侵犯性腫
    瘤細胞中發現NDPK-A 表現會促進腫瘤轉移。為了要了解NDPK-A 在腫
    瘤轉移種的角色,我們實驗室先前利用酵母菌雙雜合系統(yeast
    two-hybrid system)以NDPK-A 篩選到其結合蛋白-轉譯延長因子
    (eEF1Bα)。在蛋白質合成轉譯作用中,eEF1Bα催化eEF1A 由GDP 結
    合形式轉變成GTP 結合形式。在此, 我利用共同免疫沉澱法
    ( co-immunoprecipitation assay ) 證實: NDPK-A 可以在人類細胞
    (HEK293T)中直接和eEF1Bα結合,且跟轉移有關的突變-NDPK-AS120G
    和eEF1Bα結合力較強。在人工穩定表現NDPK-A 或NDPK-AS120G 的神
    經母細胞中,皆發現eEF1Bα的表現量降低。這些發現也提供一個新的研
    究方向,藉由NDPK-A 和eEF1Bα的結合,連結腫瘤轉移和轉譯作用。

    Tumor metastasis is a complex process which involves the spread of
    cancer cells from the origin to distant sites, where they cause secondary
    lesions. Nucleoside diphosphate kinase A (NDPK-A) encoded by NM23-H1 is
    originally proposed as a metastasis suppressor gene in certain cancer types,
    including breast carcinoma. In contrast, NDPK-A behaves as a metastasis
    promoter in other cancer types, such as neuroblastoma. To understand the
    molecular mechanism by which NDPK-A contributes to metastasis, our
    laboratory previously identified that a translation elongation factor, eEF1Bα,
    interacts with NDPK-A in the yeast two-hybrid system. The eEF1Bα belongs
    to the guanine nucleotide exchange protein family and catalyzes the exchange
    of GDP- or GTP-bound eEF1A in the elongation cycle of protein biosynthesis.
    In this study, I show a direct interaction of NDPK-A with eEF1Bα in human
    embryonic kidney (HEK) 293T cells by co-immunoprecipitation. Interestingly,
    the binding of eEF1Bα with metastasis-associated S120G mutation
    (NDPK-AS120G) was stronger than its wild type. Moreover, overexpression of
    NDPK-A or NDPK-AS120G reduces eEF1Bα expression in human
    neuroblastoma NB69 cells. These finding provide a potential link between
    metastasis and translation via the interaction of NDPK-A and eEF1Bα.

    I. INTRODUCTION.......................................................................................................6 I.i. Neuroblastoma................................................................................................... 6 I.ii. NM23/NDPK...................................................................................................... 7 I.iii. NDPK-A.............................................................................................................. 8 I.iv. Metastasis and NDPK-A................................................................................... 8 I.v. Translation ......................................................................................................... 9 I.vi. Translation elongation factor and tumorigenesis ......................................... 10 I.vii. Hypothesis ........................................................................................................ 11 II. METERIALS AND METHODS ..............................................................................12 II.i. Reagents............................................................................................................ 12 II.ii. Construction of expression of expression plasmids ...................................... 13 II.iii. Cell culture ....................................................................................................... 15 II.iv. Transfection...................................................................................................... 16 II.v. Western blot analysis....................................................................................... 16 II.vi. Co-immunoprecipitation................................................................................. 18 II.vii. Generation of GTP- and GDP-bound eEF1A protein.................................. 19 III. RESULTS ................................................................................................................... 20 III.i. Construction and expression of NDPK-A and NDPK-AS120G ...................... 20 III.ii. Construction of wild type and deletion mutants of eEF1Bα ....................... 20 III.iii. Construction of the pGEX-2TK-NDPK-AH118F expression plasmids.......... 21 III.iv. Ectopic expression of NDPK-A or eEF1Bα in HEK293T cell ..................... 21 III.v. Co-expression of NDPK-A and eEF1Bα in HEK293T cell .......................... 22 III.vi. NDPK-A interacts with eEF1Bα elongation factor in HEK293T cells ....... 22 III.vii. Effects of GTP and GDP on the interaction of eEF1A, eEF1Bα and NDPK-A............................................................................................................ 23 III.viii. Effect of NDPK-A alterations the expression of endogenous eEF1Bα in stable transfectants derived from human neuroblastoma NB69 cell.......... 23 IV. DISSCUSSION .......................................................................................................... 25 V. REFERENCE ............................................................................................................28 VI. TABLES...................................................................................................................... 36 Table 1. The international neuroblastoma staging system (INSS) [2] ............... 36 Table 2. The phosphotransferase activity of NDPK............................................ 37 5 Table 3. Band intensity ratios of eEF1A, eEF1Bα and NDPK-A in the immunoprecipitation complexes. .......................................................... 38 VII. FIGURES ................................................................................................................... 39 Figure 1. Construction of the pCMV-Tag1-NDPK-A expression plasmid......... 39 Figure 2. Schematic structures of the wild type and deletion mutants of eEF1Bα .................................................................................................... 40 Figure 3. Construction of the pCMV-Tag1-eEF1A, pCMV-Tag1-N-eEF1Bα, pCMV-Tag1-C-eEF1Bα expression plasmids. ..................................... 41 Figure 4. Restriction enzyme digestion patterns of pCMV-Tag1-NDPK-A, pCMV-Tag1-eEF1Bα and the deletion mutants. ................................. 42 Figure 5. Direct DNA sequencing of the pCMV-Tag1-NDPK-A, pCMV-Tag1-eEF1Bα, pCMV-Tag1-N-eEF1Bα, pCMV-Tag1-C-eEF1Bα constructs....................................................... 44 Figure 6. Restriction enzyme patterns of the pCMV-Tag1-NDPK-AS120G and pCMV-Tag1-NDPK-AH118F plasmids. ................................................... 45 Figure 7. Schematic presentation of pGEX-2TK-eEF1Βα, pGEX-2TK-H118F, pGEX-2TK-eEF1A1 constructs. ........................................................... 46 Figure 8. Confirmation of the pGEX-2TK-NDPK-AH118F construct. ................. 47 Figure 9. Direct DNA sequencing of the pGEX-2TK-NDPK-AH118F constructs. .................................................................................................................. 48 Figure 10. Western blot analysis of ectopic and endogenous NDPK-A, eEF1Bα, N-eEF1Bα and C-eEF1Bα expressed in HEK293T cell...... 49 Figure 11. Western blot analysis of co-expressed NDPK-A, NDPK-AS120G and eEF1Bα in HEK293T cells..................................................................... 50 Figure 12. Interaction of NDPK-A with eEF1Bα in HEK293T cell. .................... 51 Figure 13. Immunoprecipitation of NDPK-A, NDPK-AS120G or NDPK-AH118F with eEF1Bα in the presence of GTP or GDP...................................... 54 Figure 14. Effects of NDPK-A variants on the expression of eEF1A and eEF1Bα in NB69- and HEK293T-derivatives. ..................................... 55

    1. DuBois SGMD, Kalika YDDS, Lukens JNMD, Brodeur GMMD, Seeger RCMD, Atkinson JBMD, Haase GMMD, Black CTMD, Perez CMD, Shimada HMD, Gerbing RMA, Stram DOPD, Matthay KKMD: Metastatic Sites in Stage IV and IVS Neuroblastoma Correlate With Age, Tumor Biology, and Survival. Journal of Pediatric Hematology 1999;21(3):181-189.
    2. Shimada H, Nakagawa A: Tumors of the neuroblastoma group. International Journal of Clinical Oncology 1999;4:123-132.
    3. Weinstein JL, Katzenstein HM, Cohn SL: Advances in the Diagnosis and Treatment of Neuroblastoma. Oncologist 2003;8:278-292.
    4. Simon TMD, Spitz R, Faldum A, Hero B, Berthold F: New Definition of Low-Risk Neuroblastoma Using Stage, Age, and 1p and MYCN Status. Journal of Pediatric Hematology 2004;26(12):791-796.
    5. Nakagawara A, Ohira M: Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Letters 2004;204:213-224.
    6. Brodeur GM: Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer 2003;3:203-216.
    7. Schulte JH, Schramm A, Pressel T, Klein-Hitpass L, Kremens B, Eils J, Havers W, Eggert A: Microarray-Analysis: A New Approach to Study the Molecular Mechanisms of Thermo- Chemotherapy. Microarray-Analyse: Ein neuer Ansatz zur Untersuchung molekularer Mechanismen der Thermo-Chemotherapie 2003:298-302.
    8. Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B, Christiansen H, Warnat P, Brors B, Eils J, Eils R, Eggert A: Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 2005;24:7902-7912.
    9. Valentijn LJ, Koppen A, van Asperen R, Root HA, Haneveld F, Versteeg R: Inhibition of a New Differentiation Pathway in Neuroblastoma by Copy Number Defects of N-myc, Cdc42, and nm23 Genes. Cancer Research 2005;65:3136-3145.
    10. Okabe-Kado J, Kasukabe T, Honma Y, Hanada R, Nakagawara A, Kaneko Y: Clinical significance of serum NM23-H1 protein in neuroblastoma. Cancer Science 2005;96:653-660.
    11. van Noesel MM, Versteeg R: Pediatric neuroblastomas: genetic and epigenetic `Danse Macabre'. Gene 2004;325:1-15.
    12. Krebs HA, Hems R: Some reactions of adenosine and inosine phosphates in animal tissues. Biochimica et Biophysica acta 1953;12:172-180.
    13. Berg P, Joklik WK: Transphosphorylation between Nucleoside Polyphosphates. Nature 1953;172:1008-1009.
    14. Cervoni L, Lascu I, Xu Y, Gonin P, Morr M, Merouani M, Janin J, Giartosio A: Binding of Nucleotides to Nucleoside Diphosphate Kinase: A Calorimetric Study. Biochemistry 2001;40:4583- 4589.
    15. Lacombe M-LL, Munier A, Mehus JG, Lambeth DO: The Human Nm23/Nucleoside Diphosphate Kinases. Journal of Bioenergetics and Biomembranes 2000;32:247-258.
    16. Heidbuchel H, Callewaert G, Vereecke J, Carmeliet E: Membrane-bound nucleoside diphosphate kinase activity in atrial cells of frog, guinea pig, and human. Circulation research 1992;71:808-820.
    17. Morera S, Chiadmi M, LeBras G, Lascu I, Janin J: Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium. Biochemistry 1995;34:11062-11070.
    18. Postel EH: NM23-NDP kinase. The International Journal of Biochemistry & Cell Biology 1998;30:1291-1295.
    19. veer Reddy GP, Pardee AB: Multienzyme Complex for Metabolic Channeling in Mammalian DNA Replication. Proceedings of the National Academy of Sciences of the United States of America 1980;77:3312-3316.
    20. Jacobus WE, Evans JJ: Nucleoside diphosphokinase of rat heart mitochondria. Dual localization in matrix and intermembrane space. The Journal of biological chemistry 1977;252:4232- 4241.
    21. Bosnar MH, de Gunzburg J, Bago R, Brecevic L, Weber I, Pavelic J: Subcellular localization of A and B Nm23/NDPK subunits. Experimental Cell Research 2004;298:275-284.
    22. Engel M, Veron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C: A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. European journal of biochemistry 1995;234:200-207.
    23. Munoz-Dorado J, Inouye M, Inouye S: Nucleoside diphosphate kinase from Myxococcus xanthus. I. Cloning and sequencing of the gene. The Journal of biological chemistry 1990;265:2702- 2706.
    24. Wallet V, Mutzel R, Troll H, Barzu O, Wurster B, Vernon M, Lacombe M-L: Dictyostelium Nucleoside Diphospate Kinase Highly Homologous to Nm23 and Awd Proteins Involved in Mammalian Tumor Metastasis and Drosphila Development. Journal of the National Cancer Institute 1990;82:1199-1202.
    25. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IMK, King CR, Liotta LA, Steeg PS: Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 1989;342:177-180.
    26. Lambeth DO, Mehus JG, Ivey MA, Milavetz BI: Characterization and Cloning of a Nucleoside-diphosphate Kinase Targeted to Matrix of Mitochondria in Pigeon. The Journal of biological chemistry 1997;272:24604-24611.
    27. Postel EH: Multiple Biochemical Activities of NM23/NDP Kinase in Gene Regulation. Journal of Bioenergetics and Biomembranes 2003;35:31-40.
    28. Gilles AM, Presecan E, Vonica A, Lascu I: Nucleoside diphosphate kinase from human erythrocytes. Structural characterization of the two polypeptide chains responsible for heterogeneity of the hexameric enzyme. The Journal of biological chemistry 1991;266:8784-8789.
    29. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME: Evidence for a Novel Gene Associated With Low Tumor Metastatic Potential. Journal of the National Cancer Institute. 1988;80:200-204.
    30. Ouatas T, Salerno M, Palmieri D, Steeg PS: Basic and Translational Advances in Cancer Metastasis: Nm23. Journal of Bioenergetics and Biomembranes 2003;35:73-79.
    31. Lombardi D: Commentary: nm23, a metastasis suppressor gene with a tumor suppressor gene aptitude? Journal of Bioenergetics and Biomembranes 2006;38:177-180.
    32. Chang CL, Zhu X-x, Thoraval DH, Ungar D, Rawwas J, Hora N, Strahler JR, Hanash SM, Radany E: nm23-H1 mutation in neuroblastoma. Nature 1994;370:335-336.
    33. Daniela Lombardi M-LLMGP: nm23: Unraveling its biological function in cell differentiation. Journal of Cellular Physiology 2000;182:144-149.
    34. Salerno M, Ouatas T, Palmieri D, Steeg PS: Inhibition of signal transduction by the nm23 metastasis suppressor: Possible mechanisms. Clinical and Experimental Metastasis 2003;20:3-10.
    35. Fournier H-N, Albigès-Rizo C, Block MR: New Insights into Nm23 Control of Cell Adhesion and Migration. Journal of Bioenergetics and Biomembranes 2003;35:81-87.
    36. Lombardi D, Mileo AM: Protein Interactions Provide New Insight into Nm23/Nucleoside Diphosphate Kinase Functions. Journal of Bioenergetics and Biomembranes 2003;35:67-71.
    37. Freije JMP, Blay P, MacDonald NJ, Manrow RE, Steeg PS: Site-directed Mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine -dependent protein phosphotransferase pathways in vitro. The Journal of biological chemistry 1997;272:5525-5532.
    38. Zhou Q, Yang X, Zhu D, Ma L, Zhu W, Sun Z, Yang Q: Double mutant P96S/S120G of Nm23-H1 abrogates its NDPK activity and motility-suppressive ability. Biochemical and Biophysical Research Communications 2007;356:348-353.
    39. Almgren MAE, Henriksson KCE, Fujimoto J, Chang CL: Nucleoside Diphosphate Kinase A/nm23-H1 Promotes Metastasis of NB69-Derived Human Neuroblastoma. Molecular cancer research 2004;2:387-394.
    40. Roymans D, Willems R, Van Blockstaele DR, Slegers H: Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: Possible consequences in tumor metastasis. Clinical and Experimental Metastasis 2002;19:465-476.
    41. Ohkura N, Kishi M, Tsukada T, Yamaguchi K: Menin, a Gene Product Responsible for Multiple Endocrine Neoplasia Type 1, Interacts with the Putative Tumor Metastasis Suppressor nm23. Biochemical and Biophysical Research Communications 2001;282:1206-1210.
    42. Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H: Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proceedings of the National Academy of Sciences of the United 2001;98:4385-4390.
    43. Crawford RM, Treharne KJ, Best OG, Riemen CE, Muimo R, Gruenert DC, Arnaud- Dabernat S, Daniel J-Y, Mehta A: NDPK-A (but not NDPK-B) and AMPK [alpha]1 (but not AMPK [alpha]2) bind the cystic fibrosis transmembrane conductance regulator in epithelial cell membranes. Cellular Signalling 2006;18:1595-1603.
    44. von der Kammer H, Klaudiny J, Zimmer M, Scheit KH: Human elongation factor 1[beta]: cDNA and derived amino acid sequence. Biochemical and Biophysical Research Communications 1991;177:312-317.
    45. Browne GJ, Proud CG: Regulation of peptide-chain elongation in mammalian cells. European journal of biochemistry 2002;269:5360-5368.
    46. Riis B, Rattan SI, Clark BF, Merrick WC: Eukaryotic protein elongation factors. Trends Biochem Sci 1990;15:420-424.
    47. Pandolfi PP: Aberrant mRNA translation in cancer pathogenesis: an old concept revisited comes finally of age. Oncogene 2004;23:3134-3137.
    48. Proud CG: Signalling to translation: how signal transduction pathways control the protein synthetic machinery. The Biochemical journal 2007;403:217-234.
    49. Sonenberg N: Translation factors as effectors of cell growth and tumorigenesis. Current opinion in cell biology 1993;5:955-960.
    50. Lipsick JS, Wang DM: Transformation by v-Myb. Oncogene 1999;18:3047 - 3055.
    51. Clemens MJ, Bommer U-A: Translational control: the cancer connection. The International Journal of Biochemistry & Cell Biology 1999;31:1-23.
    52. Willis AE: Translational control of growth factor and proto-oncogene expression. The International Journal of Biochemistry & Cell Biology 1999;31:73-86.
    53. Brown CY, Mize GJ, Pineda M, George DL, Morris DR: Role of two upstream open reading frames in the translational control of oncogene mdm2. Oncogene 1999;18:5631-5637.
    54. Preiss T, Hentze MW: From factors to mechanisms: translation and translational control in eukaryotes. Current Opinion in Genetics & Development 1999;9:515-521.
    55. Robert E. Scott EW: P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. Journal of Cellular Physiology 2005;204:99-105.
    56. Sulic S, Panic L, Dikic I, Volarevic S: Deregulation of cell growth and malignant transformation. Croatian medical journal 2005;46:622-638.
    57. Rosenwald IB: The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 2004;23:3230-3247.
    58. Berkel HJ, Turbat-Herrera EA, Shi R, De Benedetti A: Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer epidemiology, biomarkers & prevention 2001;10:663 - 666.
    59. Clemens MJ: Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004;23:3180-3188.
    60. Thornton S, Anand N, Purcell D, Lee J: Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. Journal of molecular medicine 2003;81:536-548.
    61. Sandbaken MG, Culbertson MR: Mutations in Elongation Factor EF-1{alpha} Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces cerevisiae. Genetics 1988;120:923-934.
    62. Dinman JD, Kinzy TG: Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA 1997;3:870 -881.
    63. Farabaugh PJ, Vimaladithan A: Effect of frameshift-inducing mutants of elongation factor 1alpha on programmed +1 frameshifting in yeast. RNA 1998;4:38-46.
    64. Tatsuka M, Mitsui H, Wada M, Nagata A, Nojima H, Okayama H: Elongation factor-1 [alpha] gene determines susceptibility to transformation. Nature 1992;359:333-336.
    65. Bischoff C, Kahns S, Lund A, Jorgensen HF, Praestegaard M, Clark BFC, Leffers H: The Human Elongation Factor 1 A-2 Gene (eEF1A2): Complete Sequence and Characterization of Gene Structure and Promoter Activity. Genomics 2000;68:63-70.
    66. Khalyfa A, Bourbeau D, Chen E, Petroulakis E, Pan J, Xu S, Wang E: Characterization of Elongation Factor-1A (eEF1A-1) and eEF1A-2/S1 Protein Expression in Normal and wasted Mice. The Journal of biological chemistry 2001;276:22915-22922.
    67. Pan J, Ruest L-B, Xu S, Wang E: Immuno-characterization of the switch of peptide elongation factors eEF1A-1/EF-1[alpha] and eEF1A-2/S1 in the central nervous system during mouse development. Developmental Brain Research 2004;149:1-8.
    68. Gopalkrishnan RV, Su Z-z, Goldstein NI, Fisher PB: Translational infidelity and human cancer: role of the PTI-1 oncogene. The International Journal of Biochemistry & Cell Biology 1999;31:151-162.
    69. Dua K, Williams TM, Beretta L: Translational control of the proteome: relevance to cancer. Proteomics 2001;1:1191-1199.
    70. Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, Collins C, Gray JW, Diebold J, Demetrick DJ, Lee JM: Protein elongation factor eEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 2002;31:301-305.
    71. Lee J: The role of protein elongation factor eEF1A2 in ovarian cancer. Reproductive Biology and Endocrinology 2003;1:69.
    72. Lamberti A, Caraglia M, Longo O, Marra M, Abbruzzese A, Arcari P: The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article. Amino Acids 2004;26:443-448.
    73. Abbott CM, Proud CG: Translation factors: in sickness and in health. Trends in Biochemical Sciences 2004;29:25-31.
    74. Mansilla F, Hansen LL, Jakobsen H, Kjeldgaard NO, Clark BFC, Knudsen CR: Deconstructing PTI-1: PT1-1 is a truncated, but not mutated, form of translation elongation factor 1A1, eEF1A1. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 2005;1727:116 -124.
    75. Kinzy TG, Woolford-Jr JL: Increased Expression of Saccharomyces cerevisiae Translation Elongation Factor 1{alpha} Bypasses the Lethality of a TEF5 Null Allele Encoding Elongation Factor 1{beta}. Genetics 1995;141:481-489.
    76. Carr-Schmid A, Valente L, Loik VI, Williams T, Starita LM, Kinzy TG: Mutations in Elongation Factor 1beta , a Guanine Nucleotide Exchange Factor, Enhance Translational Fidelity. Molecular and cellular biology 1999;19:5257-5266.
    77. Chang CL, Strahler JR, Thoraval DH, Qian MG, Hinderer R, Hanash SM: A nucleoside diphosphate kinase A (nm23-H1) serine 120-->glycine substitution in advanced stage neuroblastoma affects enzyme stability and alters protein-protein interaction. Oncogene 1996;12:659-667.
    78. MacDonald NJ, Freije JMP, Stracke ML, Manrow RE, Steeg PS: Site-directed Mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. Journal of molecular medicine 1996;271:25107- 25116.
    79. Chen CJ, Traugh JA: Expression of recombinant elongation factor 1 beta from rabbit in Escherichia coli. Phosphorylation by casein kinase II. Biochimica et biophysica acta 1995;1264:303- 311.
    80. Janssen GM, Maessen GD, Amons R, Moller W: Phosphorylation of elongation factor 1 beta by an endogenous kinase affects its catalytic nucleotide exchange activity. The Journal of biological chemistry 1988;263:11063-11066.
    81. Sheu GT, Traugh JA: Recombinant subunits of mammalian elongation factor 1 expressed in Escherichia coli. Subunit interactions, elongation activity, and phosphorylation by protein kinase CKII. The Journal of biological chemistry 1997;272:33290-33297.
    82. Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O: eEF1B: At the dawn of the 21st century. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 2006;1759:13-31.
    83. Bec G, Kerjan P, Waller JP: Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. The Journal of biological chemistry 1994;269:2086-2092.
    84. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984;224:1121- 1124.
    85. Okabe-Kado J, Kasukabe T, Hozumi M, Honma Y, Kimura N, Baba H, Urano T, Shiku H: A new function of Nm23/NDP kinase as a differentiation inhibitory factor, which does not require it's kinase activity. FEBS Letters 1995;363:311-315.
    86. Andersen GR, Pedersen L, Valente L, Chatterjee I, Kinzy TG, Kjeldgaard M, Nyborg J: Structural Basis for Nucleotide Exchange and Competition with tRNA in the Yeast Elongation Factor Complex eEF1A:eEF1B[alpha]. Molecular Cell 2000;6:1261-1266.
    87. Marco E, Martin-Santamaria S, Cuevas C, Gago F: Structural Basis for the Binding of Didemnins to Human Elongation Factor eEF1A and Rationale for the Potent Antitumor Activity of These Marine Natural Products. Journal of medicinal chemistry 2004;47:4439-4452.
    88. Andersen GR, Nissen P, Nyborg J: Elongation factors in protein biosynthesis. Trends in biochemical sciences 2003;28:434-441.
    89. Edmonds BT, Bell A, Wyckoff J, Condeelis J, Leyh TS: The Effect of F-actin on the Binding and Hydrolysis of Guanine Nucleotide by Dictyostelium Elongation Factor 1A. The Journal of biological chemistry 1998;273:10288-10295.
    90. Janssen GM, Moller W: Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis. The Journal of biological chemistry 1988;263:1773-1778.
    91. Minella O, Mulner-Lorillon O, Bec G, Cormier P, Belle R: Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF- 1betagammadelta/ValRS) control the various functions of EF-1alpha. Bioscience reports 1998;18:119-127.
    92. Biondi RM, Engel M, Sauane M, Welter C, Issinger OG, Jimenez de Asua L, Passeron S: Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture. FEBS letters 1996;399:183-187.
    93. Crawford RM, Treharne KJ, Arnaud-Dabernat S, Daniel J-Y, Foretz M, Viollet B, Mehta A: Protein kinase CK2 acts as a signal molecule switching between the NDPK-A/AMPK {alpha}1 complex and NDPK-B. The FASEB journal 2007;21:88-98.

    下載圖示 校內:2012-08-14公開
    校外:2013-08-14公開
    QR CODE