簡易檢索 / 詳目顯示

研究生: 李威璁
Lee, Wei-Tsung
論文名稱: 鋼筋混凝土樑柱接頭複合材料補強之實驗研究與數值模擬
Experimental and Numerical Study of Reinforcement Concrete Beam Column Joint Strengthened with Carbon Fiber Reinforced Polymer
指導教授: 邱耀正
Chiou, Yaw-Jeng
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 181
中文關鍵詞: 鋼筋混凝土梁柱接頭大尺寸試驗非線性有限元素法數位元影像相關法複合材料補強
外文關鍵詞: RC beam column joint, full scale test, nonlinear analysis, digital image correlation, CFRP
相關次數: 點閱:157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在應用大尺寸結構實驗與數值模擬探討以碳纖維複合材料補強鋼筋混凝土梁柱接頭之結構行為。本研究的結構實驗主要分為內柱與外柱接頭兩大類,共計完成六組大尺寸鋼筋混凝土梁柱接頭實驗。內柱試體除了一座原型試體JI0外,另外有兩座震前補強試體JI1、JI2。JI1補強方式為只有補強接頭區的角隅邊,並且碳纖維沒有錨定。JI2補強方式為接頭區皆有補強,且碳纖維有鋼板與化學錨拴錨定。外柱試體除了一座原型試體JE0外,兩座震前補強試體分別為JE1、JE2。其補強方式的差異,主要為碳纖維的黏貼方向。JE1碳纖維的黏貼方向為水平方向,JE2碳纖維的黏貼方向為對角黏貼。本研究應用有別於傳統量測儀器之非接觸性的光學量測技術於鋼筋混凝土梁柱接頭補強試驗,來量測整個接頭區的位移場和應變場,並針對觀察到的接頭區行為,提出一簡單的評估模型,來預測內柱以CFRP補強後的層間剪力。本研究的數值模擬方面,主要提出一非線性分析模式,來預測鋼筋混凝土梁柱接頭補強後的強度與破壞模式,並經由與接頭補強實驗所得的實驗數據相比較作驗證。
    本研究實驗結果顯示所提出之補強方式,能有效提升接頭的強度、勁度與能量消散量。本實驗研究結果也顯示CFRP以水平補強的效果,其所能達到極限層間剪力較CFRP以對角補強的效果為佳;然而對於抵抗接頭變形的能力,則是CFRP以對角補強較佳。本研究根據實驗觀察所提出的簡易評估模型能有效的預測內柱、外柱及其以CFRP補強後的層間剪力。由實驗和數值模擬皆可發現有側向梁的接頭較無側向梁的接頭有較高的層間剪力。本研究數值結果與實驗結果相比較顯示,所建議的數值分析模式可準確預測鋼筋混凝土梁柱接頭補強後的強度。本研究利用非接觸性之光學量測方法,能有效觀察到接頭區的裂縫發展,並量測到接頭區的整體位移場與應變場。

    This paper investigates the structural behavior of RC beam-column joints strengthened with carbon fiber reinforced polymer (CFRP). Both interior and exterior beam-column joints are tested in the study. For both interior and exterior beam-column joints, three full scale specimens, including two specimens strengthened with CFRP and one prototype specimen, are tested in this study. The specimens are designed to represent the pre-seismic code design construction in which there is no transverse reinforcement. A new optical non-contact technique, digital image correlation (DIC), which can measure the full strain field of specimen, is used to observe the full strain field of the joint. A simplified model is proposed to predict the shear strength of beam-column joints. In addition, a three dimension (3-D) nonlinear finite element analysis is used to simulate the behavior of these interior and exterior joints.
    The experimental results show that the beam-column joints strengthened with CFRP can increase their structural stiffness, strength, and energy dissipation capacity. The rehabilitation strategy is effective to increase the ductility of the joint and transform the failure mode to beam or delay the shear failure mode. By observing the measured results, it is found that the mechanical anchorages can prevent the debonding of CFRP. The proposed simplified model is found to accurately predict the column shear and shear strength of the joints strengthened with CFRP. Comparing with the test and numerical results, it demonstrates that the proposed 3-D nonlinear finite element analysis can be used to simulate the behavior of beam-column joints strengthened with CFRP.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與目的 1 1.1.1 研究背景 1 1.1.2 研究目的 2 1.2 本文內容與架構 3 第二章 文獻回顧 4 2.1 鋼筋混凝土梁柱接頭之研究 4 2.2 鋼筋混凝土梁柱接頭補強之研究 6 2.3 數位影像相關法之研究 10 第三章 數位影像相關法 12 3.1 數位影像相關係數法 12 3.2 應變場計算 13 3.3 影像重建 15 第四章 接頭試驗 17 4.1 試驗規劃 17 4.2 試體規劃 17 4.2.1 梁柱內接頭及其補強之試體規劃 17 4.2.2 梁柱外接頭及其補強之試體規劃 18 4.3 材料性質 19 4.3.1 混凝土 19 4.3.2 鋼筋 20 4.3.3 補強材料 20 4.4 試體製作 21 4.4.1 鋼筋混凝土梁柱內接頭試體製作 21 4.4.2 鋼筋混凝土梁柱內接頭試體補強製作 22 4.4.3 鋼筋混凝土梁柱外接頭試體製作 23 4.4.4 鋼筋混凝土梁柱外接頭試體補強製作 24 4.5 試驗設備與量測儀器 25 4.5.1 試驗設備與裝置 25 4.5.2 試驗量測系統 26 4.6 試驗加載過程 27 第五章 接頭試驗過程與結果討論 28 5.1 試驗流程 28 5.1.1 試驗前的準備階段 28 5.1.2 試驗進行中階段 29 5.1.3 試驗結束後階段 29 5.2 試驗過程 29 5.2.1 鋼筋混凝土梁柱內接頭試驗過程 29 5.2.2 補強試體JI1過程 32 5.2.3 補強試體JI2過程 34 5.2.4 鋼筋混凝土梁柱外接頭試驗過程 36 5.2.5 補強試體JE1過程 39 5.2.6 補強試體JE2過程 41 5.2.7 試驗結果小結 44 5.3 實驗結果分析 45 5.3.1 破壞包絡線 45 5.3.2 勁度衰減 46 5.3.3 能量消散量 47 第六章 數位元影像相關法分析結果討論 48 6.1 原型試體接頭區之裂縫觀察 48 6.1.1 接頭試體JI0之裂縫觀察 48 6.1.2 接頭試體JE0之裂縫觀察 49 6.1.3 觀察結果小結 49 6.2 補強試體之應變場觀察 50 6.2.1 補強試體JI1接頭區應變場觀察 50 6.2.2 補強試體JI2接頭區應變場觀察 51 6.2.3 補強試體JE1接頭區應變場觀察 51 6.2.4 補強試體JE2接頭區應變場觀察 52 6.3 試體接頭區之水平垂直方向應變分析 52 6.4 梁與柱整體變形分析 53 6.5 試體接頭區之剪應變分析 53 第七章 接頭剪力評估模型 55 7.1 ACI 318-02規範 55 7.2 Hakuto剪力衰減模式 56 7.3 本文建議之內柱接頭剪力評估模型Ⅰ 57 7.4 本文建議之內柱接頭剪力評估模型Ⅱ 59 7.5 分析結果比較 62 7.5.1 接頭剪力評估模型Ⅰ與接頭試體分析結果比較 62 7.5.2 接頭剪力評估模型Ⅱ與接頭試體分析結果比較 63 第八章 數值分析 64 8.1 混凝土、鋼筋、CFRP之材料組成率行為 64 8.1.1 混凝土之材料組成率 64 8.1.2 鋼筋之材料組成率 67 8.1.3 CFRP之材料組成率 68 8.2 分析之基本假設 68 8.3 分析流程簡介 69 8.4 分析模式建立 70 第九章 數值分析結果與討論 72 9.1 RC梁柱接頭的分析模型驗證 72 9.1.1 內柱接頭JI0的分析模型驗證 72 9.1.2 外柱接頭JE0的分析模型驗證 73 9.2 RC梁柱接頭補強的分析模型驗證 74 9.2.1 補強試體JI1的分析模型驗證 74 9.2.2 補強試體JI2的分析模型驗證 75 9.2.3 補強試體JE1的分析模型驗證 76 9.2.4 補強試體JE2的分析模型驗證 77 9.3 參數研究 77 9.3.1 軸力對接頭層間剪力的影響 78 9.3.2 側向梁對接頭層間剪力的影響 78 9.3.3 樓版對接頭層間剪力的影響 78 9.3.4 深寬比對接頭層間剪力的影響 79 9.3.5 梁主筋直徑對接頭層間剪力的影響 79 9.3.6 疊層數對接頭層間剪力的影響 80 第十章 結論與建議 81 10.1 結論 81 10.2 未來之建議 83 參考文獻 84 附錄 176 附錄一 176 附錄二 178 附錄三 180 表目錄 表4- 1 混凝土抗壓試驗結果 93 表4- 2內柱鋼筋抗拉試驗結果 93 表4- 3外柱鋼筋抗拉試驗結果 93 表4- 4內柱所使用之碳纖維性質 94 表4- 5外柱所使用之碳纖維(FAW200)性質 94 表4- 6外柱所使用之環氧樹脂 (EPOXY SB838)性質 95 表5- 1 試驗結果與比較 95 表7- 1 模型Ⅰ分析結果與JI0、JI1、JI2實驗比較表 96 表7- 2 模型Ⅰ分析結果與JE0、JE1、JE2實驗比較表 96 表7- 3 模型Ⅱ分析結果與JI0、JI1、JI2實驗比較表 96 表7- 4 模型Ⅱ分析結果與JE0、JE1、JE2實驗比較表 97 表7- 5 模型Ⅱ分析結果與文獻上實驗結果比較表 97 圖目錄 圖3- 1物體變化示意圖 98 圖3- 2 在變形前後的物體上 98 圖4- 1 內柱試體配筋圖 99 圖4- 2 以CFRP對試體JI1貫穿補強示意圖 99 圖4- 3 以CFRP對試體JI1環繞補強示意圖 100 圖4- 4 以CFRP對試體JI2補強示意圖 100 圖4- 5 外柱試體配筋圖 101 圖4- 6 混凝土圓柱試驗標準試體 101 圖4- 7 混凝土抗壓試驗 102 圖4- 8 鋼筋拉力試驗 102 圖4- 9 CFRP檢驗報告 103 圖4- 10 環氧樹脂(Epoxy)檢驗報告 104 圖4- 11 內柱試體製作過程照片 106 圖4- 12 內柱試體JI1補強過程照片 107 圖4- 13 內柱試體JI2補強過程示意圖 109 圖4- 14 外柱試體製作過程照片 111 圖4- 15 外柱試體JE1補強過程示意圖 113 圖4- 16 外柱試體JE2補強過程示意圖 115 圖4- 17 內柱試體試驗裝置示意圖 115 圖4- 18 內柱試體試驗全覽圖 116 圖4- 19 外柱試體試驗裝置示意圖 116 圖4- 20外柱試體試驗全覽圖 117 圖4- 21 MTS油壓致動器 117 圖4- 22 量測系統 118 圖4- 23 試驗量測裝置設備 119 圖4- 24 實驗相片與分析範圍 119 圖4- 25 試驗加載歷程 120 圖5- 1 試驗流程圖 121 圖5- 2 JI0試驗前照片 122 圖5- 3 JI0試驗後照片 122 圖5- 4 JI0試體接頭裂紋發展圖 123 圖5- 5 JI0遲滯迴圈圖 124 圖5- 6 JI1試驗前照片 124 圖5- 7 JI1試驗後照片 125 圖5- 8 JI1試體接頭裂紋發展圖 126 圖5- 9 JI1遲滯迴圈圖 127 圖5- 10 JI2試驗前照片 127 圖5- 11 JI2試驗後照片 128 圖5- 12 JI2遲滯迴圈圖 128 圖5- 13 JE0試驗前照片 129 圖5- 14 JE0試驗後照片 129 圖5- 15 JE0試體接頭裂紋發展圖 131 圖5- 16 JE0遲滯迴圈圖 132 圖5- 17 JE1試驗前照片 132 圖5- 18 JE1試驗後照片 133 圖5- 19 JE1遲滯迴圈圖 133 圖5- 20 JE2試驗前照片 134 圖5- 21 JE2試驗後照片 134 圖5- 22 JE2遲滯迴圈圖 135 圖5- 23 內柱試驗之破壞包絡線比較圖 135 圖5- 24 外柱試驗之破壞包絡線比較圖 136 圖5- 25內柱試體之勁度衰減比較圖 136 圖5- 26外柱試體之勁度衰減比較圖 137 圖5- 27內柱試體之能量消散量比較圖 137 圖5- 28外柱試體之能量消散量比較圖 138 圖6- 1 JI0在0.25% Drift Ratio下的應變場 138 圖6- 2 JI0在0.5% Drift Ratio下的應變場 139 圖6- 3 JI0在0.75% Drift Ratio下的應變場 139 圖6- 4 JI0在2.5% Drift Ratio下的應變場 140 圖6- 5 JE0在0.25% Drift Ratio下的應變場 140 圖6- 6 JE0在0.5% Drift Ratio下的應變場 141 圖6- 7 JE0在0.75% Drift Ratio下的應變場 141 圖6- 8 JE0在3% Drift Ratio下的應變場 142 圖6- 9 JI0在2% Drift Ratio受推下的位移場 142 圖6- 10 JI0在2% Drift Ratio受拉下的位移場 143 圖6- 11 JI1在0.25% Drift Ratio下的應變場 143 圖6- 12 JI1在0.5% Drift Ratio下的應變場 144 圖6- 13 JI1在3% Drift Ratio下的應變場 144 圖6- 14 JI2在0.5% Drift Ratio下的應變場 145 圖6- 15 JI2在2% Drift Ratio下的應變場 145 圖6- 16 JI2在3.5% Drift Ratio下的應變場 146 圖6- 17 JE1在0.25% Drift Ratio下的應變場 146 圖6- 18 JE1在1.5% Drift Ratio下的應變場 147 圖6- 19 JE1在3.5% Drift Ratio下的應變場 147 圖6- 20 JE1在4.5% Drift Ratio下的應變場 148 圖6- 21 JE2在0.25% Drift Ratio下的應變場 148 圖6- 22 JE2在2.5% Drift Ratio下的應變場 149 圖6- 23 JE2在4.0% Drift Ratio下的應變場 149 圖6- 24 JE2的CFRP在4.0% Drift Ratio下產生斷裂的情形 150 圖6- 25 JI0在X和Y方向的平均應變 150 圖6- 26 JI2在X和Y方向的平均應變 151 圖6- 27 JE0在X和Y方向的平均應變 151 圖6- 28 X方向平均應變比較圖 152 圖6- 29 Y方向平均應變比較圖 152 圖6- 30 試體JI0,JI1,JI2梁變形圖 153 圖6- 31 試體JI0,JI1,JI2柱變形圖 153 圖6- 32 試體JE0,JE1,JE2梁變形圖 154 圖6- 33 試體JE0,JE1,JE2柱變形圖 154 圖6- 34 試體平均剪應變在2.5% Drift Ratio時比較圖 155 圖7- 1 ACI規範接頭束制程度示意圖 156 圖7- 2 梁柱接頭有效寬度示意圖 157 圖7- 3 梁柱接頭內力示意圖 157 圖7- 4梁柱接頭外力示意圖 158 圖7- 5 JI0在2.5% Drift Ratio下的位移場 158 圖7- 6 Hakuto鋼筋握裹折減係數模型 159 圖7- 7 梁柱接頭層間剪力評估模型 160 圖7- 8 接頭層間剪力在不同CFRP比之預測曲線圖 161 圖7- 9 接頭剪力在不同CFRP比之預測曲線圖 161 圖7- 10 接頭試體驗證結果整理圖 162 圖8- 1 Kent & Park 提出混凝土組成律之示意圖 163 圖8- 2 總應變分解為彈性和塑性應變分量 163 圖8- 3 有限元素-ABAQUS軟體之分析流程 164 圖8- 4 元素示意圖 (Hibbitt et al., 2006) 165 圖8- 5 邊界條件示意圖 166 圖8- 6 單純梁柱接頭試體三維有限元素模型圖 167 圖8- 7 以CFRP補強之梁柱接頭補強試體三維有限元素模型圖 167 圖9- 1 JI0的數值模擬與實驗比較圖 168 圖9- 2 JI0的破壞模式比較圖 169 圖9- 3 JE0的數值模擬與實驗比較圖 169 圖9- 4 JE0的破壞模式比較圖 170 圖9- 5 JI1的數值模擬與實驗比較圖 171 圖9- 6 JI2的數值模擬與實驗比較圖 171 圖9- 7 JE1的數值模擬與實驗比較圖 172 圖9- 8 JE2的數值模擬與實驗比較圖 172 圖9- 9 接頭層間剪力在不同軸力比較圖 173 圖9- 10 接頭有無側向梁比較圖 173 圖9- 11 樓版對接頭層間剪力影響圖 174 圖9- 12 接頭層間剪力在不同hb/hc下比較圖 174 圖9- 13 接頭層間剪力在不同db/hc下比較圖 175 圖9- 14 接頭層間剪力在不同疊層數下比較圖 175

    ACI Committee 318. (2002). “Building Code Requirements for Structure Concrete (ACI 318-02) and Commentary (ACI 318R-02).” American Concrete Institute, Farmington Hills, Michigan.
    Alcocer, S. M., and Jirsa, J. O. (1993). “Strength of reinforced concrete frame connections rehabilitated by jacketing.” ACI Structural Journal, 90(3), 249-261.
    Almusallam, T. H., and Al-Salloum, Y. A. (2007). “Seismic Response of Interior RC Beam-Column Joints Upgraded with FRP Sheets. II: Analysis and Parametric Study.” Journal of Composites for Construction, 11(6), 590–600.
    Al-Salloum, Y. A., and Almusallam, T. H. (2007). “Seismic Response of Interior RC Beam-Column Joints Upgraded with FRP Sheets. I: Experimental Study.” Journal of Composites for Construction, 11(6), 575–589.
    Andersona, M., Lehmanb, D., and Stantonb, J. (2008). “A cyclic shear stress–strain model for joints without transverse reinforcement.” Engineering Structures, 30(4) 941-954.
    Antonopoulos, C. P., and Triantafillou, T. C. (2002). “Analysis of FRP strengthened beam-column joints.” Journal of Composites for Construction, 6(1), 41–51.
    Antonopoulos, C., and Triantafillou, T. C. (2003). “Experimental investigation of FRP-strengthened RC beam-column joints.” Journal of Composites for Construction, 7(1), 39–49.
    ASCE Task Committee on Concrete and Masonry Structure. (1982). State of the art report on finite element analysis of reinforced concrete, ASCE.
    Attaalla, S. A. (2004). “General Analytical Model for Nominal Shear Stress of Type 2 Normal-and High-Strength Concrete Beam-Column Joint” ACI Structural Journal, 101(1), 65–614.
    Baglin, P. S., and Scott, R. H. (2000). “Finite element modeling of reinforced concrete beam-column connections.” ACI Structural Journal, 97(6), 886-894.
    Bakir, P. G., and Boduroglu, H. M. (2002). “A new design equation for predicting the joint shear strength of monotonically loaded exterior beam-column joints.” Engineering Structures, 24(8) 1105-1117.
    Bakir, P. G., and Boduroglu, H. M. (2006). “Nonlinear analysis of beam-column joints using softened truss model.” Mechanics Research Communication, 33(2) 134-147.
    Biddah, A. Ghobarah, A., and Aziz, T. S. (1997). “Upgrading of nonductile reinforced concrete frame connections.”Journal of Structural Engineering, 123(8), 1001-1010.
    Castellani, A., Negro, P., Colombo, A., Grandi, A., Ghisalberti, G., and Castellani, M. (1999). ‘‘Carbon Fiber Reinforced Polymers(CFRP) for Strengthening and Repairing Under Seismic Actions,’’ Special Publication No. I.99.41, European Laboratory for Structural Assessment, Joint Research Center, Ispra, Italy.
    Choi, S., and Shah, S. P. (1997). “Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation.” Experimental Mechanics, 37(3), 307-313.
    Chu, T. C., Ranson, W. F., Sutton, M. A. and Peters, W. H. (1985). “Application of Digital-Image-Correlation Techniques to Experimental Mechanics.” Experimental Mechanics, 25(3), 232-244.
    Chung, H. Y., Liu, R. S., Lin, R. S., and Ju, S.H. (2008). “Assessment of Stress Intensity Factors for Load-Carrying Fillet Welded Cruciform Joints Using a Digital Camera.” International Journal of Fatigue, 30(10-11), 1861-1872.
    Ehsani, M.R., and Wight,J. K. (1985). “Exterior Reinforced Concrete Beam-to-Column Connections Subjected to Earthquake-Type Loading.” ACI Materials Journal, 82(4), 492-499.
    El-Amoury, T., and Ghobarah, A. (2002). “Seismic rehabilitation of beam-column joint using GFRP sheets.” Engineering Structures, 24(11), 1397–1407.
    Geng, Z. J., Chajes, M. J., Chou, T.-W., and Pan, D. Y. C. (1998). ‘‘The Retrofitting of Reinforced Concrete Column-to-Beam Connections.’’ Composites Science and Technology, 58(8), 1297–1305.
    Gergely, J., Pantelides, C. P., and Reaveley, L. D. (2000). “Shear strengthening of RCT-joints using CFRP composites.” Journal of Composites for Construction, 4(2), 56–64.
    Ghobarah, A., and El-Amoury, T. (2005). “Seismic rehabilitation of deficient exterior concrete frame joints.” Journal of Composites for Construction, 9(5), 408–416.
    Ghobarah, A., and Said, A. (2001). “Seismic rehabilitation of beam-column joints using FRP laminates.” Journal of Earthquake Engineering, 5(1), 113–129.
    Ghobarah, A., and Said, A. (2002). “Shear strengthening of beam-column joints.” Engineering Structures, 24(7), 881–888.
    Ghobarah, A., Aziz, T. S., and Biddah, A. (1997). “Rehabilitation of reinforced concrete frame connections using corrugated steel jacketing.” ACI Structural Journal, 94(3), 282-294.
    Granata, P. J., and Parvin, A. (2001). “An experimental study on kevlar strengthening of beam-column connections.” Composite Structures, 53(2), 163–171.
    Hakuto, S. Park, R., and Tanaka, H. (1995). “Retrofitting of Reinforced Concrete Moment Resisting Frame”, Research Report 95-4, Department of Civil Engineering,University of Canterbury, Christchurch, 390pp.
    Hakuto, S., Park, R., and Tanaka, H. (1999). “Effect of deterioration of bond of beam bars passing through interior beam-column joints on flexural strength and ductility.” ACI Structural Journal, 96(5), 858–864.
    Hakuto, S., Park, R., and Tanaka, H. (2000). “Seismic load tests on interior and exterior beam-column joints with substandard reinforcing details.” ACI Structural Journal, 97(1), 11-25.
    Han, G., Sutton, M. A., and Chao, Y. J. (1994). “Study of Stationary Crack-Tip Deformation Fields in Thin Sheets by Computer Vision.” Experimental Mechanics, 34(2), 125-140.
    He, Z. H., Sutton, M. A., Ranson, W. F., and Peters, W. H. (1984). “Two-Dimensional Fluid Velocity Measurements by Use of Digital Speckle Correlation Techniques.” Experimental. Mechanics, Vol. 24(2), 117-121.
    Hegger J., Sherif A. and Roeser W. (2004). “Nonlinear finite element analysis of reinforced concrete beam-column connections.” ACI Structural Journal, 101(5), 604–614.
    Hibbitt, Karlsson, and Sorensen, Inc. (2006). ABAQUS Theory Manual, Analysis User’s Manual, User Manual and Example Problems Manual, Version 6.6-1.
    Holzenkämpfer, P. Ingenieurmodelle des verbundes geklebter bewehrung für Betonbauteile. Ph.D. dissertation, TU Braunschweig, Germany (in German), 1994.
    Hufner, D. R., and Accorsia, M. L. (2009). “A progressive failure theory for woven polymer-based composites subjected to dynamic loading.” Composite Structures, 89(2), 177-185.
    Hwang, S. J., and Lee, H. J. (1999). “Analytical Model for Predicting Shear Strengths of Exterior Reinforced Concrete Beam-Column Joints for Seismic Resistance.” ACI Structural Journal, 96(5), 846-857.
    Hwang, S. J., and Lee, H. J. (2000). “Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance.” ACI Structural Journal, 97(1), 35–44.
    Ju, S. H., Liu, S. H., and Liu, K. W. (2006). “Measurement of Stress Intensity Factors by Digital Camera.” International Journal of Solids and Structures, 43(5), 1009-1022.
    Kanada, K., Kondon, G., Fujii, S. and Morita, S. (1985). “Relation between Beam Bar Anchorage and Shear Resistance at Exterior Beam-Column Joints.” Transactions of the Japan Concrete Institute, 6, 443-440.
    Kent, D.C., and Park, R. (1971). “Flexural Members with Confined Concrete.” Journal of the Structural Division, ASCE, 97(7), 1969-1990.
    Kien, L. T., Lee, K., Lee, D.,Woo, S. (2010). “Experiment Study of RC Beam-Column Joints Strengthed Using CFRP Composites.” Composites Part B: Engineering, 41(1), 76-85.
    Kim, J., and LaFave, J. M. (2007). “Key influence parameter for the joint shear behavior of reinforced concrete (RC) beam column connections.” Engineering Structures, 29(10), 2523-2539, 2007.
    Kupfer, H., Hilsdorf, H. K., and Rusch, H. (1969). “Behavior of concrete under biaxial stresses.” ACI Journal, 66(8), 656-666.
    Leon, R.T. (1990). “Shear Strength and Hysteretic Behavior of Interior Beam-Column Joints.” ACI Structure Journal, 87(1), 3-11.
    Li, B., and Grace Chua, H. Y. (2009). “Seismic Performance of Strengthened Reinforced Concrete Beam-Column Joints Using FRP Composites.” Journal of Structural Engineering, 135(10), 1177-1190.
    Li, B., Tran, C. T. N., and Pan, T.C. (2009). “Experimental and Numerical Investigations on the Seismic Behavior of Lightly Reinforced Concrete Beam-Column Joints.” Journal of Structural Engineer, 135(9), 1007-1018.
    Li, J., Samali, B., Ye, L., and Bakoss, S. (2002). “Behavior of concrete beam-column connections reinforced with hybrid FRP sheet.” Composite Structures, 57(1–4), 357–365
    Lowes, L. N., and Altoontash, A. (2003). “Modeling reinforced-concrete beam-column joints subjected to cyclic loading.” Journal of Structural Engineering, 129(12), 1686–1697.
    Meinheit, D. F., and Jirsa, J. O. (1981). “Shear Strength of R/C Beam-Column Connections.” Journal of the Structural Division, 107(11), 2227-2244.
    Mitra, N., and Lowes, L. N. (2007). “Evaluation, calibration and verification of a reinforced concrete beam–column joint model.” Journal of Structural Engineering, 133(1), 105-120.
    Mukherjee, A., and Joshi, M. (2005). “FRPC Reinforced Concrete Beam-Column Joints under Cyclic Excitation.” Composite Structures, 70(2), 185-199.
    Muller, M., Toussaint, E., Destrebecq, J. F., and Grédiac, M. (2004). “Experimental and numerical study of reinforced concrete specimens strengthened with composite plates.” Composites Part A: Applied Science and Manufacturing, 35(7-8), 885-893.
    Pampanin, S., Calvi, G. M., and Moratti, M. (2002). “Seismic Behavior of R.C. Beam-Column Joints Designed for Gravity Loads.” 12th European Conference on EarthquakeEngineering, Paper Reference 726.
    Pantazopoulou, S., and Bonacci, J. (1992). ‘‘Consideration of questions about beam-column joints.’’ ACI Structural Journal, 89(1!), 27–36.
    Pantelides, C. P., Okahashi, Y., and Reaveley, L. D. (2008). “Seismic Rehabilitation of Reinforced Concrete Frame Interior Beam-Column Joints With FRP Composites.” Journal of Composites for Construction, 12(4), 435-445.
    Parker D. E., and Bullman, P. J. M. (1997). “Shear strength within reinforced concrete beam-column joints.” The Structure Engineer, 75(4), 53-57.
    Parvin, A., and Wu, S.H. (2008). “Ply angle effect on fiber composite wrapped reinforced concrete beam–column connections under combined axial and cyclic loads.” Composite Structures, 82(4), 532-538
    Paulay, T., Park, R., and Preistley, M. J. N. (1978). “Reinforced Concrete Beam-Column Joints under Seismic Actions,” ACI Materials Journal, 75(11), 585-593.
    Peters, W. H., and Ranson, W. F. (1982). “Digital Imaging Techniques in Experimental Stress Analysis.” Optical Engineering, 21, 427-432.
    Shiohara, H. (2001). “New model for shear failure of RC beam-column connections.” Journal of Structural Engineering, 127(2), 152-160.
    Stephen Kurtz, P.E., Perumalsamy Balaguru, M., and Helm, J., (2008). “Experimental Study of Interfacial Shear Stresses in FRP-Strengthened RC Beams.” Journal of Composites for Construction, 12(3), 312–322.
    Supaviriyakit, T., and Pimanmas, A. (2008). “Comparative performance of sub-standard interior reinforced concrete beam–column connection with various joint reinforcing details.” Material and Structures, 41(3), 543-557.
    Tsonos, A. G. (1999). “Lateral load response of strengthened reinforced concrete beam-column joints.” ACI Structural Journal, 96(1), 46-56.
    Tung, S.H., Kuo, J.C., and Shih, M.H. (2005). “Strain distribution analysis using digital-image-correlation techniques.” The Eighteenth KKCNN Symposium on Civil Engineering-NTU29, December, pp19-21.
    Wang, Y. C., and Hsu, K. (2009). “Shear strength of RC jacketed interior beam-column joints without horizontal shear reinforcement.” ACI Structural Journal, 106(2), 222-232.
    Yoneyama, S., Kitagwa, A., Iwata, S., Tani, K., and Kikuta, H. (2007). “Bridge deflection measurement using digital image correlation.” Experimental Techniques, 33(1), 34-40.
    Yoneyama, S., Kitagwa, A., Kitamura, K., and Kikuta, H. (2005). “Deflection distribution measurement of steel structure using digital image correlation.” In: L.M. Hanssen and P.V. Farrell (eds), Optical Diagnostics, Proceedings of SPIE, 5880, 58800G, International Society for Optical Engineering, Bellingham, WA, September.
    Zhou, H. (2009). “Reconsideration of seismic performance and design of beam-column joints of earthquake-resistant reinforce concrete frames.” Journal of Structural Engineering, 135(7), 762-773.
    李有豐、彭添富、施邦榮、朱國棟,「碳纖維強化複合材料補強簡支鋼筋混凝土梁之有效方法介紹」,結構工程,台北,民國87年。
    林恭弘,「梁柱接頭FRP 補強研究」,碩士論文,國立台灣大學土木工程學研究所,台北,民國89 年。
    邱佑宗、朱國棟,「複合材料圍束補強混凝土參數分析與實驗驗證」,工業材料,135期,157-165頁,民國85年3月

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE