簡易檢索 / 詳目顯示

研究生: 俞侑妗
Yu, You-Jin
論文名稱: 吸金蛋白的鑑定與螢光細胞定量貴金屬的新方法
Identification of gold adsorption proteins and a novel approach to quantify precious metals by fluorescent cells
指導教授: 吳意珣
Ng, I-Son
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 蛋白鑑定吸金蛋白綠色螢光蛋白螢光淬滅金屬離子定量
外文關鍵詞: Protein identification, Gold adsorped protein, GFP, Fluorescence quenching, Metal ion quantification
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一株由工研院提供的高溫菌株經長期研究證明其吸金能力極佳且專一性強,有利於在環境中以環保的程序回收貴金屬。本研究欲以蛋白質體學分析鑑定其吸金蛋白,首先使用超過濾法及 His-trap 親和性管柱分別分離胞外蛋白,再進行對金離子或奈米金吸附測試,具強吸金能力的蛋白經電泳 (SDS-PAGE) 及串聯式質譜 (Q-TOF-MS) 分析並鑑定出蛋白身分。採用 SWISS-model 模擬分析蛋白結構,推測主要吸金反應的關鍵為正負電荷間的作用力、alpha 螺旋結構提供結合位點、或具有金屬結合點。將目標蛋白以基因工程方法構建於 pET 系統並轉化至大腸桿菌 (E. coli) 中表達,然而測試金離子吸附效果僅些微提升,較原生高溫菌蛋白來的差,推測吸金機制是蛋白中特定胜肽序列的協同效應,後續欲根據 PmrA/PmrB 雙組分蛋白初步建立金屬離子檢測的響應系統直接證明吸金序列的功能性。
    另外,因大腸桿菌本身亦可吸附金屬離子,本文比較六株 E. coli 的金離子吸附能力,分別是 W3110、DH5α、BL21 及三株已導入綠色螢光蛋白的 DH5α 菌株 (分別是原生 GFP、優化結構的 sfGFP 及表面展示含金結合胜肽的 FadL-GBP-GFP)。結果顯示皆具有良好的吸金效果且無明顯差異,但螢光蛋白在細胞吸金後造成螢光淬滅且 sfGFP > GFP > FadL-GBP-GFP。進一步研究金、銀及銅離子添加量對於 sfGFP 細胞螢光信號的變化,取得螢光強度 (log Y) 與感應耦合電漿放射光譜 (ICP-OES) 定量具有線性相關性,金、銀、銅的線性回歸結果分別是金:log Y = 1.502 - 0.0337 X (R2 = 0.995);銀: log Y = 2.039 - 0.0197 X (R2 = 0.964) 及銅: log Y = 2.060 - 0.0333 X (R2 = 0.987)。測量 zeta 電位分析細胞表面在吸附金、銀、銅屬離子前後帶電荷量,金離子的電荷差異最大,達 14 mV,此與螢光淬滅的效應也吻合;金明顯影響了細胞表面的負電及 sfGFP 內部 Ser65-Tyr66-Gly67 殘基自催化環化作用的電子轉移,阻止氧化還原反應的進行而無法發出綠色螢光。本研究取得螢光信號與 ICP-OES 之間的線性方程式,提供了一種效率好且靈敏度高的生物感測新方法。

    The proteomics strategy was utilized to analyze and identify the gold adsorption proteins from this thermophilic strain. The results showed that small proteins or peptides have higher ability to adsorb gold and the binding was resulted from the negatively charged domains, alpha-helix and metal binding sites. After heterologous expressed two predicted proteins in E. coli, 65aa enhanced 41.5 % gold adsorption ability while 99aa showed no function. However, they were not better than the protein mixture from wild type. According to the results, the mechanism of Au adsorption in this strain is supposed to be a synergistic effect with specific peptide sequences. Further, we attempt to establish a responsive system to detect metal ions based on the PmrA/PmrB two-component system. Moreover, a novel approach to quantify precious metal ion concentration by fluorescent cells was established. The sfGFP intensity decreased linearly after adsorbed Au3+, Ag+, or Cu2+, thus well correlations between fluorescence intensity and ICP-OES results were obtained, which is a novel, precious, eco-friendly quantified method for metal ion concentration in the solution.

    目錄 中文摘要 I Extanded Abstract II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與計畫 1 1.3 研究架構 2 第二章 文獻回顧 3 2.1 大腸桿菌基因工程 3 2.1.1 pET 表達系統 3 2.1.2 Lac operon 誘導機制 5 2.2 蛋白質體學 6 2.2.1 蛋白電泳分析 (SDS-PAGE) 7 2.2.2 質譜分析 8 2.3 蛋白質的分離與純化 9 2.4 貴金屬回收 11 2.5 生物吸附金屬離子 13 2.5.1 吸附金屬蛋白研究進展 13 2.5.2 微生物細胞吸附金屬離子 16 2.5.3 生物吸附的影響因素 17 2.6 綠色螢光蛋白 19 2.6.1 綠色螢光蛋白的發展史 19 2.6.2 sfGFP 與 FadL-GBP-GFP 22 2.7 雙組分調控系統 PmrA/PmrB 24 2.8 電感耦合電漿放射光譜儀 (ICP-OES) 25 第三章 實驗方法與材料 26 3.1 實驗藥品 26 3.2 實驗儀器 29 3.3 菌株、質體、引物材料 30 3.4 菌株與構建質體之材料 32 3.5 溶液配置 32 3.6 實驗步驟 35 3.6.1 菌株培養與保存 35 3.6.2 基因重組構建 35 3.6.3 蛋白樣品收集與分離 42 3.6.4 蛋白樣品純化 44 3.6.5 一維蛋白電泳分析 (SDS-PAGE) 47 3.6.6 蛋白吸金測試 49 3.6.7 PmrA/PmrB 雙成分調控螢光 (sfGFP) 測試 50 3.6.8 細胞吸附金屬離子測試與螢光強度定量 50 3.6.9 細胞 Zeta potential 測定 52 第四章 結果與討論 53 4.1 功能性蛋白提純分離與身分鑑定 53 4.1.1 Approach A 使用超過濾膜以分子量分離蛋白 54 4.1.2 Approach B 利用 His-trap 親和性管柱分離蛋白 59 4.2 pET 系統表達目標蛋白 64 4.2.1 獲得序列 64 4.2.2 質體構建 65 4.2.3 誘導表達及吸金測試 70 4.3 以 PmrA/PmrB 雙組分調控機制建立金屬響應系統 79 4.3.1 Salmonella 與 E. coli 的 PmrA/PmrB 蛋白差異比較 80 4.3.2 PmrA/PmrB 雙成分調控螢光系統建立與構建 83 4.3.3 PmrA/PmrB 雙成分調控螢光 (sfGFP) 測試結果 87 4.4 螢光定量金、銀、銅離子濃度 88 4.4.1 菌株金離子吸附能力比較 89 4.4.2 細胞的金屬吸附與螢光淬滅效應 90 4.4.3 Zeta potential 分析結果 93 第五章 結論與未來展望 95 5.1 結論 95 5.2 未來展望 95 第六章 參考文獻 96

    1. Abdi, O. and M. Kazemi (2015). "A review study of biosorption of heavy metals and comparison between different biosorbents." Journal of Material and Environmental Science 6(5): 1386-1399.
    2. Aebersold, R. and M. Mann (2003). "Mass spectrometry-based proteomics." Nature 422(6928): 198-207.
    3. Akita, S., L. Yang and H. Takeuchi (1996). "Solvent extraction of gold(III) from hydrochloric acid media by nonionic surfactants." Hydrometallurgy 43(1): 37-46.
    4. Beveridge, T. J. and S. F. Koval (1981). "Binding of metals to cell envelopes of Escherichia coli K-12." Applied and Environmental Microbiology 42(2): 325-335.
    5. Block, H., B. Maertens, A. Spriestersbach, N. Brinker, J. Kubicek, R. Fabis, J. Labahn and F. Schäfer (2009). Immobilized-Metal Affinity Chromatography (IMAC): A Review. Methods in Enzymology, Academic Press. 463: 439-473.
    6. Brown, S. (1997). "Metal-recognition by repeating polypeptides." Nature Biotechnology 15(3): 269-272.
    7. Chalfie, M. (1994). "Green fluorescent protein as a marker for gene expression." Trends in Genetics 10(5): 151.
    8. Chan Chung, K. C., L. Cao, A. V. Dias, I. J. Pickering, G. N. George and D. B. Zamble (2008). "A High-Affinity Metal-Binding Peptide from Escherichia coli HypB." Journal of the American Chemical Society 130(43): 14056-14057.
    9. Chen, H. D. and E. A. Groisman (2013). "The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications." Annual Review of Microbiology 67: 83-112.
    10. Chen, W. M., H. W. Huang, J. S. Chang, Y. L. Han, T. R. Guo, S. Y. Sheu (2013). "Tepidimonas fonticaldi sp. nov., a slightly thermophilic betaproteobacterium isolated from a hot spring." International Journal of Systematic and Evolutionary Microbiology 63(5):1810-6.
    11. Chen, Y. J. (2003). "Mass Spectrometry and Proteomics."
    12. Das, N. (2010). "Recovery of precious metals through biosorption - A review." Hydrometallurgy 103(1–4): 180-189.
    13. Deplanche, K. and L. E. Macaskie (2008). "Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans." Biotechnology and Bioengineering 99(5): 1055-64.
    14. DeSilva, T. M., G. Veglia, F. Porcelli, A. M. Prantner and S. J. Opella (2002). "Selectivity in heavy metal- binding to peptides and proteins." Biopolymers 64(4): 189-197.
    15. Donia, A. M., A. A. Atia and K. Z. Elwakeel (2005). "Gold(III) recovery using synthetic chelating resins with amine, thio and amine/mercaptan functionalities." Separation and Purification Technology 42(2): 111-116.
    16. Ertan, E. and M. Gülfen (2009). "Separation of gold(III) ions from copper(II) and zinc(II) ions using thiourea-formaldehyde or urea-formaldehyde chelating resins." Journal of Applied Polymer Science 111(6): 2798-2805.
    17. Gomes, C. M. and P. Wittung-Stafshede (2011). "Protein Folding and Metal Ions: Mechanisms, Biology and Disease." ChemBioChem 12(4): 647-647.
    18. Han, Y. L., J. H. Wu, C. L. Cheng, D. Nagarajan, C. R. Lee, Y. H. Li, Y. C. Lo, J. S. Chang (2017). "Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2" Bioresource Technology 239: 160-170
    19. Heim, R., A. B. Cubitt and R. Y. Tsien (1995). "Improved green fluorescence." Nature 373(6516): 663-664.
    20. Hochuli, E., W. Bannwarth, H. Dobeli, R. Gentz and D. Stuber (1988). "Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent." Nature Biotechnology 6(11): 1321-1325.
    21. Huang, D. J. and T. S. Leu (2010). "Gold Nanoparticles Self-Assembly at Liquid-Liquid interface and its Mechanism."
    22. Ishikawa, S. I., K. Suyama, K. Arihara and M. Itoh (2002). "Uptake and recovery of gold ions from electroplating wastes using eggshell membrane." Bioresource Technology 81(3): 201-206.
    23. Jacob, F. and J. Monod (1961). "Genetic regulatory mechanisms in the synthesis of proteins." Journal of Molecular Biology 3(3): 318-356.
    24. Joo, J. H., S. H. Hassan and S. E. Oh (2010). "Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus." International Biodeterioration & Biodegradation 64(8): 734-741.
    25. Klaus-Joerger, T., R. Joerger, E. Olsson and C. G. Granqvist (2001). "Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science." Trends in Biotechnology 19(1): 15-20.
    26. Lackowicz, J. R. (1983). "Principles of fluorescence spectroscopy: Quenching of Fluorescence." 8: 277-330
    27. Langley, S. and T. J. Beveridge (1999). "Effect of O-Side-Chain-Lipopolysaccharide Chemistry on Metal Binding." Applied and Environmental Microbiology 65(2): 489-498.
    28. Liang, H., X. Deng, M. Bosscher, Q. Ji, M. P. Jensen and C. He (2013). "Engineering Bacterial Two-Component System PmrA/PmrB to Sense Lanthanide Ions." Journal of the American Chemical Society 135(6): 2037-2039.
    29. Lu, Y., N. Yeung, N. Sieracki and N. M. Marshall (2009). "Design of Functional Metalloproteins." Nature 460(7257): 855-862.
    30. Mack, C., B. Wilhelmi, J. R. Duncan and J. E. Burgess (2007). "Biosorption of precious metals." Biotechnology Advances 25(3): 264-271.
    31. Malik, A. (2004). "Metal bioremediation through growing cells." Environment International 30(2): 261-278.
    32. McFarland, A. D., C. L. Haynes, C. A. Mirkin, R. P. V. Duyne and H. A. Godwin (2004). "Color My Nanoworld." Journal of Chemical Education 81: 544A.
    33. Michalak, I., K. Chojnacka and A. Witek-Krowiak (2013). "State of the Art for the Biosorption Process—a Review." Applied Biochemistry and Biotechnology 170(6): 1389-1416.
    34. Miller, J. D., R. Y. Wan and J. R. Parga (1990). "Characterization and electrochemical analysis of gold cementation from alkaline cyanide solution by suspended zinc particles." Hydrometallurgy 24(3): 373-392.
    35. Morrissey, J. H. (1981). "Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity." Analytical Biochemistry 117(2): 307-10.
    36. Nakajima, A. (2003). "Accumulation of gold by microorganisms." World Journal of Microbiology and Biotechnology 19(4): 369-374.
    37. Ni, C., C. Yi and Z. Feng (2001). "Studies of syntheses and adsorption properties of chelating resin from thiourea and formaldehyde." Journal of Applied Polymer Science 82(13): 3127-3132.
    38. Opella, S. J., T. M. DeSilva and G. Veglia (2002). "Structural biology of metal-binding sequences." Current Opinion in Chemical Biology 6(2): 217-223.
    39. Pédelacq, J. D., S. Cabantous, T. Tran, T. C. Terwilliger and G. S. Waldo (2006). "Engineering and characterization of a superfolder green fluorescent protein." Nature Biotechnology 24(1): 79-88.
    40. Pandey, A. and M. Mann (2000). "Proteomics to study genes and genomes." Nature 405(6788): 837-846.
    41. Park, D., Y. S. Yun and J. M. Park (2010). "The past, present, and future trends of biosorption." Biotechnology and Bioprocess Engineering 15(1): 86-102.
    42. Park, T. J., S. Zheng, Y. J. Kang and S. Y. Lee (2009). "Development of a whole-cell biosensor by cell surface display of a gold-binding polypeptide on the gold surface." FEMS Microbiol Lett 293(1): 141-147.
    43. Sarikaya, M., C. Tamerler, D. T. Schwartz and F. Baneyx (2004). "Materials assembly and formation using engineered polypeptides." Annual Review of Materials Research 34: 373-408.
    44. Schlesinger, M. and M. Paunovic (2011). "Modern Electroplating, Fifth Edition: Electrodeposition of Gold." 4: 115-130.
    45. Scott, R. H., V. A. Fassel, R. N. Kniseley and D. E. Nixon (1974). "Inductively coupled plasma-optical emission analytical spectrometry." Analytical Chemistry 46: 75-80.
    46. Seker, U. O., B. Wilson, J. L. Kulp, J. S. Evans, C. Tamerler and M. Sarikaya (2014). "Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships." Biomacromolecules 15(7): 2369-2377.
    47. Shaner, N. C., R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer and R. Y. Tsien (2004). "Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein." Nature Biotechnology 22(12): 1567-1572.
    48. Shimomura, O., F. H. Johnson and Y. Saiga (1962). "Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea." Journal of Cellular and Comparative Physiology 59(3): 223-239.
    49. Shoshan, M. S. and E. Y. Tshuva (2011). "The MXCXXC class of metallochaperone proteins: model studies." Chemical Society Reviews 40(11): 5282-5292.
    50. Silver, S. (1996). "Bacterial resistances to toxic metal ions - a review." Gene 179(1): 9-19.
    51. Soleimani, M. and T. Kaghazchi (2008). "Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - An agricultural waste." Bioresource Technology 99(13): 5374-5383.
    52. Stock, A. M., V. L. Robinson and P. N. Goudreau (2000). "Two-component signal transduction." Annual Review of Biochemistry 69(1): 183-215.
    53. Studier, F. W. and B. A. Moffatt (1986). "Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes." Journal of Molecular Biology 189(1): 113-130.
    54. Tamerler, C., E. E. Oren, M. Duman, E. Venkatasubramanian and M. Sarikaya (2006). "Adsorption Kinetics of an Engineered Gold Binding Peptide by Surface Plasmon Resonance Spectroscopy and a Quartz Crystal Microbalance." Langmuir 22(18): 7712-7718.
    55. Tsien, R. Y. (1998). "The green fluorescent protein." Annual Review of Biochemistry 67(1): 509-544.
    56. Tsien, R. Y. (2009). "Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture)." Angewandte Chemie International Edition 48(31): 5612-5626.
    57. Tsuruta, T. (2004). "Biosorption and recycling of gold using various microorganisms." The Journal of General and Applied Microbiology 50: 221-228.
    58. Tyers, M. and M. Mann (2003). "From genomics to proteomics." Nature 422(6928): 193-197.
    59. Van Den Berg, B., P. N. Black, W. M. Clemons and T. A. Rapoport (2004). "Crystal structure of the long-chain fatty acid transporter FadL." Science 304(5676): 1506-1509.
    60. Veglio, F. and F. Beolchini (1997). "Removal of metals by biosorption: a review." Hydrometallurgy 44(3): 301-316.
    61. Vijayaraghavan, K. and Y. S. Yun (2008). "Bacterial biosorbents and biosorption." Biotechnology Advances 26(3): 266-291.
    62. Wösten, M. M. S. M., L. F. F. Kox, S. Chamnongpol, F. C. Soncini and E. A. Groisman (2000). "A Signal Transduction System that Responds to Extracellular Iron." Cell 103(1): 113-125.
    63. Waldron, K. J. and N. J. Robinson (2009). "How do bacterial cells ensure that metalloproteins get the correct metal?" Nature Reviews Microbiology 7(1): 25-35.
    64. Waldron, K. J., J. C. Rutherford, D. Ford and N. J. Robinson (2009). "Metalloproteins and metal sensing." Nature 460(7257): 823-830.
    65. Wang, J. and C. Chen (2009). "Biosorbents for heavy metals removal and their future." Biotechnology Advances 27(2): 195-226.
    66. Warra, A. A. and W. L. O. Jimoh (2011). "Overview of an inductively coupled plasma (ICP) system." International Journal of Chemical Research 3(2): 41-48.
    67. Wilkins, M. R., J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-Smith, D. F. Hochstrasser and K. L. Williams (1996). "Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It." Biotechnology and Genetic Engineering Reviews 13(1): 19-50.
    68. Wilson, C. J., D. Apiyo and P. Wittung-Stafshede (2004). "Role of cofactors in metalloprotein folding." Quarterly Reviews of Biophysics 37(3-4): 285-314.
    69. Zouboulis, A. I., M. X. Loukidou and K. A. Matis (2004). "Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils." Process Biochemistry 39(8): 909-916.

    下載圖示 校內:2020-07-17公開
    校外:2020-07-17公開
    QR CODE