簡易檢索 / 詳目顯示

研究生: 劉仲翊
Liu, Jung-Yi
論文名稱: Pseudo Housekeeping Genes之選取及其在微陣列資料之Normalization上的應用
The Selection of Pseudo Housekeeping Genes and its Application to Normalize Microarray Data
指導教授: 詹世煌
Chan, Shin-Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 微陣列
外文關鍵詞: microarray, normalization, lowess, housekeeping
相關次數: 點閱:194下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Microarray 是一門新興的生物科技,可以同時監督數千基因的表現。在實驗過程中,有許多系統性的變異會影響所測得基因表現值,此等變異若未加以移除,將造成資料偏頗,使我們對基因解讀錯誤,而得到不正確的結論。如何控制microarray實驗變異,以確保microarray資料的品質,便成為分析microarray資料前必須要做的前置處理工作。由於Dudoit et al. (2002) 之lowess normalization並適用各種情況的資料,所以我們利用housekeeping genes的概念,提出一種normalization方法。並在文章中以模擬的方式評估所建議之normalization法與lowess之優劣,並以成功大學微生物免疫所提供的微陣列資料來說明所建議方法的應用。

      Microarray is a new biotechnology which allows people to monitor the expression levels for thousands of genes simultaneously. There are many sources of systematic bias which may affect the measured gene expression levels during the fabrication of microarray. In order to making correct decision, this systematic bias has to be identified and be removed before analyzing data. In this paper, we pointed out the fault of lowess normalization and used the concept of housekeeping genes to propose a new normalization method. Simulation study shows that the performance of the suggested normalization method is superior to the available approaches. The proposed approach is illustrated with gene expression data provided by College of Medicine, NCKU.

    第一章 緒論 . 1.1 研究背景與動機…………………………………………………1 1.2 研究目的………………………………………………………... 2 第二章 Microarray實驗 . 2.1 Microarray實驗的製作過程….……………………………..… . 3 2.2 Microarray資料的前處理方法………………………………... . 5 2.2.1 資料篩選與品質控制………………………………… 6 2.2.2.1 Normalization 的目的……………………………... 9 2.2.2.2 一些Normalization的方法…………………………... 9 第三章 利用Pseudo housekeeping genes來normalize microarray data 3.1 Pseudo housekeeping genes的選取…………………………... 12 3.2 利用Pseudo housekeeping genes做Normalization …………. 15 第四章 統計模擬 4.1.1 有重複試驗資料之模擬設定…………………………………. 17 4.1.2 有重複試驗資料之模擬結果…………………………………. 20 4.2.1 無重複試驗資料之模擬設定…………………………………. 23 4.2.2 無重複試驗資料之模擬結果…………………………………. 24 第五章 實例分析 5.1 ABC microarray資料…………………………………………. 27 5.1.1 Normalization (ABC)……………………………….. 28 5.1.2 分析比較(ABC)…………………………………….. 32 5.2 GeneAsia microarray資料……………………………………. 34 5.2.1 Normalization(GeneAsia)…………………….……… 34 5.2.2 分析比較(GeneAsia)………………………………… 37 5.3 NCKU microarray資料……………………………………….. 39 5.3.1 Normalization (NCKU)……………………………… 40 5.3.2 分析比較(NCKU)…………………………………… 43 第六章 結論與建議 6.1 結論……………………………………………………………. 45 6.2 建議……………………………………………………………. 46 參考文獻 47

    [1] Dudoit, S., Fridlyand, J., and speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97, 77-87.
    [2] Dudoit, S., Yang, Y. H., Callow, M. J., Speed, T. P. and (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12, 111-139.
    [3] Shin-Huang Chan, Li-Ju Chen, Nan-Hwa Chow and Hsiao-Sheng Liu (2005). An ancova approch to normalize microarray data, and its performance to existing methods. Journal of Bioinformatics and Computational Biology. Vol. 3 Issue 2, p257, 12p.
    [4] D. L. Wilson, M. J. Buckley, C. A. Helliwell and l. W. Wilson (2002).New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19 no. 11 2003, pages 1325-1332.
    [5] Alexander Zien, Thomas Aigner, Ralf Zimmer and Thomas Lengauer (2001). Centralization : a new method for the normalization of gene expression data. Bioinformatics, Vol. 17 Suppl, 1 2001, pages s323-S331.
    [6] 許惠婷(2004), M-A圖意涵及Normalization之商榷, 國立成功大學統計學研究所
    [7] 陳麗如(2004), cDNA微陣列資料的新normalization方法, 國立成功大學統計學研究所

    下載圖示 校內:2006-07-14公開
    校外:2006-07-14公開
    QR CODE