簡易檢索 / 詳目顯示

研究生: 紀仁智
Chi, Jen-Chin
論文名稱: 化膿性鏈球菌的免疫球蛋白G分解酶之表現與特性分析
Expression and Characterization of IdeS, an IgG-degrading protease of Streptococcus pyogenes
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 化膿性鏈球菌
外文關鍵詞: IdeS, streptococcus
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   化膿性鏈球菌是一種常見的人類病原菌,它會藉由不同的機制逃避宿主的免疫組織系統,進而感染宿主產生壞疽性肌膜炎(necrotizing fasciitis)及鏈球菌毒性休克症候群(streptococcal toxic shock syndrome, STSS)。病原體細菌發展了複雜且多樣化的毒性機制削弱或使宿主的免疫防禦系統喪失能力。IdeS (化膿性鏈球菌免疫球蛋白G分解酶),是從人類的病原菌(化膿性鏈球菌)分泌至細胞外且對免疫球蛋白G具有特異性的半光胺酸蛋白酶(cysteine protease),它會對人類免疫球蛋白G的絞鏈位置進行催化分解作用;IdeS可以藉此幫助化膿性鏈球菌逃離宿主先天的免疫系統及抑制抗體調控的吞噬作用。為了進一步瞭解IdeS酵素活性以及與免疫球蛋白G的作用機制,我們純化重組蛋白質IdeS 野生株、C94S、H262A及S285A突變株並進行特性分析。經由核磁共振的實驗分析得知表現純化後的IdeS具有正確的結構,在研究的過程中發現IdeS在不同的pH範圍由1至11會形成不同的水解產物,並利用N端蛋白質定序得知其氨基酸切位。雖然IdeS是屬於半光胺酸蛋白酶,但研究中發現它不僅可以被半光胺酸蛋白酶抑制劑(IAA, E64)所抑制,還可以被絲胺酸蛋白酶(serine protease)抑制劑(PMSF, TLCK)所抑制。根據氨基酸序列比對,IdeS具有和醣基作用的hemagglutinin domain,因此我們推測免疫球蛋白G上的CH2 domain醣基在IdeS催化過程中扮演重要角色,結果顯示IdeS對不同形式的IgG的催化速率會有差異。利用PNGase F將IgG上醣化去除後IdeS對免疫球蛋白G的活性降低了2倍,而利用DTT將IgG兩個重鏈之間的雙硫鍵去除後IdeS對免疫球蛋白G的活性卻是增高1.5倍,醣基及雙硫鍵一併去除則降低1.7倍。另外我們也發現IdeS及不具蛋白酶活性的C94S皆可以進入人類呼吸道上皮細胞(A549 cell),並造成細胞凋亡。實驗中也發現caspase抑制劑可以抑制IdeS造成的細胞凋亡,因此IdeS可能會藉由引發caspase cascade進而驅動人類呼吸道上皮細胞產生細胞凋亡的現象,我們的結果顯示IdeS會藉由調整人類的免疫反應及造成細胞凋亡以便增加化膿性鏈球菌在宿主中的存活率上扮演著新的重要機制。

     Streptococcus pyogenes, one of the most common human bacterial pathogens, causes infections such as necrotizing faciitis and streptococcal toxic shock syndrome, by diverse mechanisms that allow the bacteria to evade the immune system and cause disease. Pathogenic bacteria often develop complex and diverse virulence mechanisms that weaken or disable the host immune defense system. The IgG-degrading enzyme of Streptococcus pyogenes (IdeS) is a virulence factor that helps S. pyogenes escaping from human innate immunity and inhibits antibody-mediated phagocytosis. The IdeS, also known as streptococcal Mac, is a secreted IgG-specific cysteine endopeptidase and catalyzes proteolytic cleavage at the lower hinge of human IgG. In order to study the molecular mechanism of IdeS, wild-type, C94S, H262A, and S285A mutant proteins were expressed in E. coli and purified to homogeneity. We found that recombinant IdeS has the correct fold using NMR experiment. Based on the analysis of pH-dependent study, IdeS can be converted into different proteolytic products at pH values ranging from 1 to 11. Three proteolytic products were identified, and their cleavage sites were determined by an N-terminal amino acid sequencer. However, these proteolytic products have similar protease activity. The protease activity of IdeS was inhibited by cysteine protease inhibitors, such as iodoacetate (IAA) and E64. Interestingly, the serine protease inhibitors including PMSF and TLCK can also inhibit its protease activity. The analysis of primary sequence suggested that IdeS contains a hemagglutinin domain involved in glycan binding. Therefore, we hypothesized that two glycosylation sites on IgG CH2 domains plays an important role in recognizing IdeS. Our results showed that IdeS exhibited proteolytic activity to different forms of IgG. For example, deglycosylation of IgG caused a 2-fold decrease in cleavage rate of IgG by IdeS. The removal of disulfide bonds of IgG caused a 1.5-fold increase in cleavage rate of IgG by IdeS. In contrast, the removal of disulfide bonds of deglycosylated IgG caused a 1.7-fold decrease in cleavage rate of IgG by IdeS. We also found that both IdeS and its inactive mutant, C94S, can enter human respiratory epithelial cell A549 and induced cells to undergo apoptosis. Because caspase inhibitors can inhibit IdeS-induced apoptosis in A549 cells, the mechanism may be mediated by activation of caspase cascade. Our results suggest that IdeS represents a novel and significant bacterial virulence determinant that modulates the immune response and induce cell apoptosis to survive in the human host.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 縮寫檢索表 XII 儀器 XIII 第一章 緒論 1 1-1 化膿性鏈球菌之介紹 1 1-2 化膿性鏈球菌釋放免疫調節相關酵素之介紹 2 1-3 化膿性鏈球菌免疫球蛋白G分解酶(IdeS)之功能介紹 4 1-4 化膿性鏈球菌外毒素B(SPE B)之介紹 5 1-5 酵素引發的細胞凋亡現象之介紹 7 1-6 研究動機及內容之介紹 9 第二章 材料與方法 10 2-1 IdeS之基因構築 10 2-1-1 Host strains, genotypes and vector 11 2-1-2 聚合連鎖反應 (PCR) 11 2-1-3 限制酵素反應 (Digestion) 12 2-1-4 接合反應 (Ligation) 13 2-1-5 勝任細胞(competent cell)的製備 13 2-1-6 形質轉換 (Transformation) 14 2-2 IdeS蛋白及其突變株蛋白之表現及純化 16 2-2-1 基因的生長及誘發 17 2-2-2 細胞萃取物之備製 18 2-2-3 管柱色層分析法純化 18 2-2-4 SDS-PAGE分析 19 2-3 IdeS及其突變株重組蛋白之質譜儀分析 21 2-4 IdeS蛋白結構之研究 22 2-4-1 NMR所需的蛋白質樣品置備 22 2-4-2 NMR光譜的測定 22 2-5 免疫球蛋白G (IgG) 之純化 22 2-6 IdeS及其突變株重組蛋白之酵素活性分析 23 2-6-1 IdeS及其突變株重組蛋白之酵素活性測定 23 2-6-2 IdeS蛋白質自動水解之分析 24 2-6-3 IdeS對去醣化及雙硫鍵免疫球蛋白G之活性分析 24 2-7 N-端蛋白質定序分析 25 2-8 人類呼吸道上皮細胞(A549)的培養方法 26 2-8-1 配置DMEM培養液 26 2-8-2 細胞的繼代培養 26 2-8-3 細胞的計數 27 2-9 共軛焦顯微鏡觀察試驗 28 2-9-1 FITC conjugated IdeS 28 2-9-2 Nuclear DNA staining 28 2-10 細胞凋亡染色分析之量化 29 第三章 實驗結果 32 3-1 IdeS及其突變株之基因構築 32 3-2 IdeS蛋白之表現及純化 32 3-2-1 IdeS蛋白及其突變株蛋白純化 32 3-2-2 IdeS蛋白之蛋白質質譜分析 33 3-2-3 IdeS蛋白之NMR光譜的測定 34 3-3 IdeS及其突變株重組蛋白之酵素活性分析 34 3-3-1 IdeS及其突變株重組蛋白之酵素活性測定 34 3-3-2 IdeS蛋白質自動降解之分析 35 3-3-3 IdeS及SPE B對免疫球蛋白G之酵素切割位置 (cleavage site)比較與分析 35 3-3-4 IdeS對去醣化及雙硫鍵免疫球蛋白G之活性分析 35 3-4 IdeS及其不具活性突變株蛋白進入人類呼吸道上皮細胞 36 之分析 3-5 IdeS及其不具活性突變株蛋白引發細胞凋亡之分析 36 第四章 討論 38 4-1 IdeS酵素活性及催化機制之探討 38 4-2 IdeS進入人類呼吸道上皮細胞之探討 40 4-3 IdeS導致細胞凋亡之探討 40 第五章 結論 42 參考文獻 43 圖表 48 自述 71

    Alimenti, E., Tafuri, S., Scibelli, A., d’Angelo, D., Manna, L., Pavone, L. M., Belisario, M. A. and Staiano, N. Pro-apoptotic signaling pathway activated by echistatin in GD25 cells. Biochim. Biophys. Acta 1693:73-80, 2004.
    Bayle, K. W., Wesson, C. A., Liou, L. E., Fox, L. K., Bohach, G. A. and Trumble,W. R. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect. Immun. 66:336-342, 1998.
    Berge, A. and Bjorck, L. Streptococcal cysteine protease releases biologically active fragments of streptococcal surface proteins. J. Biol. Chem. 270: 9862-9867, 1995.
    Lei, B., Deleo, F. R., Hoe, N. P., Graham, M. R., Mackie, S. M., Cole, R., Liu, M., Hill, H. R., Low, D. E., Federle, M. J., Scott, J. R. and Musser, J. M. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nature 7:1298-1305, 2000.
    Bohach, G. A., Hauser, A. R. and Schlievert, P. M. Cloning of the gene , speB, for streptococcal pyrogenic exotoxin type B in Escherichia coli. Infect. Immun. 56:1665-1667, 1988.
    Bhakdi, S., Roth, M., Sziegoleit, A. and Tranum-Jensen, J. Isolation of two hemolytic forms of streptolysin O. Infect. Immun. 46: 394-400, 1984.
    Con, L.A. Woodard, D. R. and Tomory, G. S. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317:146-149, 1987.
    Dale, J. B., Washburn, R. G., Marques, M. B. and Wessels, M. R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64:1495-1501, 1996.
    D’Costa, S. S. and Boyle, M. D. Interaction of a group A streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24:341-349, 1998.
    DeAngelis, P. L., Yang, N. and Weigel, P. H. The Streptococcus pyogenes hyaluronidase synthetase: sequence comparison and conservation among various group A strains. Biochem. Biophy. Res. Commun. 199:1-10, 1994.
    Elliott, S. D. A proteolytic enzyme produced by group A streptococci with special reference to its effect on the type-specific M protein antigen. J. Exp. Med. 92:201-219, 1950.
    Hauser, A. R. and Schlievert, P. M. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J. Bacteriol. 172: 4536-4542, 1990.
    HenKart. ICE family proteases: mediators of all apoptotic cell death?
    Immunity. 4:195-201, 1996.
    Herwald, H., Collin, M., Muller-Esterl, W. and Bjorck, L. Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184: 665-673, 1996.
    Holm, S. E., Norrby, A., Bergholm, A. M. and Norgren, M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166:31-37, 1992.
    Johnson, D. R., Stevens D. L. and Kaplan E. L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever or uncomplicated pharyngitis J. Infect. Dis. 166:374-382, 1992.
    Kapur, V., Majeasky, M. W., Li, L.-L., Black, R. A. and Musser, J. M. Cleavage of interleukin 1β (IL-1β) precursor to produce active IL-1β by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90:7676-7680, 1993.
    Kapur, V., Maffei, J. T., Greer, R. S., Li, L.-L., Adams, G. J. and Musser, J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1convertase) protests mice against challenge with heterologous group A strepthcocci. Microb. Pathog. 16:443-450, 1994.
    Kuo, C.-F., Wu, J.-J., Lin, K.-Y., Tsai, P.-J., Lee, S.-C., Jin, Y.-T., Lei, H.-Y. and Lin, Y.-S. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935, 1998.
    Kuo, C.-F., Wu, J.-J., Tsai, P.-J., Kao, F.-J., Lei, H.-Y., Lin, M.-T. and Lin, Y.-S. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67:126-130, 1999.
    Lei, B. Liu, M. Meyers, E. G., Manning, H. M., Nagiec, M. J. and Musser, J. M. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis -inhibiting Mac protein. Infect. Immun. 71:2881-4,2003.
    Martin, S. J., Green, D. R. and Cotter, T. G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem. Sci. 19:26-30, 1994.
    Miller, D. K. The role of the Caspase family of cysteine proteases in apoptosis. Semin. Immunol. 9:35-49, 1997.
    Monack, D. M., Raupach, B., Hromockyj, A. E. and Falkow, S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. U S A. 93:9833-8, 1996.
    Musser, J. M., Stockbauer, K., Kapur, V. and Rudgers, G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyrogenes extracellular cysteine protease (Interleukin 1 convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64:1913-1917, 1996.
    Collin, M. and Olse´n, A. Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect. Immun. 71:2983–2992, 2003.
    Norrby-Teglund, A., Norgren, M., Holm, S. E., Anderson, U. and Anderson, J. Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B. Infect. Immun. 62:3731-3738, 1994.
    Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T. and Ota, M. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40:930-936, 1994.
    Peng, J. M., Liang, S. M. and Liang. C. M. VP1 of foot-and mouth disease virus induces apoptosis via the Akt signaling pathway. J. Biol. Chem. 279:52168-52174, 2004.
    Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S. and Kehoe, M. A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63:2776-2779, 1995.
    Robinson, J. H. and Kehoe, M. A. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol. Today 13:362-367, 1992.
    Ruckdeschel, K., Roggenkamp, A., Lafont, V., Mangeat, P., Heesemann, J. and Rouot, B. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect. Immun. 65:4813-21, 1997.
    Sha, Z, Stockbauer, K., Rudgers, G. and Musser, J. M. Subsitution of Cys-192 and His-340 in Streptococcus pyogenes extracellular cysteine protease alter ablates zymogen processing and proteolytic activity, abstr. D111. In Abstracts of the 96th General Meeting of the American Sorciety for Microbiology 1996. American Society for Microbiology, D.C.
    Shanley, T. P., Schrier, D., Kapur, V., Kehoe, M., Musser, J. M. and Ward, P. A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect. Immun. 64: 870-877, 1996.
    Stevens, D. L., Tanner, M. H. and Winship, J. Severe group A streptococcal infections associated with a toxic shock like syndrome and scarlet fever toxin A. N. Eng. J. Med. 321:1-8, 1989.
    Speziale, P., Hook, M., Switalski, L. M. and Wadstrom, T. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157:420-427, 1984.
    Tai, J. Y., Kortt, A. A., Liu, T-Y. and Elliott, S. D. Primary structure of streptococcal protease. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251:1955-1959, 1976.
    Tsai, P.-J., Lin, Y.-S., Kuo, C.-F., Lei, H.-Y. and Wu, J.-J. Group A Streptococcus induces apoptosis in human epithelial cells. Infect. Immun. 67: 4334-4339, 1999.
    Tsai, W.-H., Chang, C.-W., Chuang W.-J., Lin, Y.-S., Wu, J.-J., Liu, C.-C., Chang, W.-T. and Lin, M-T. Streptococcal Pyrogenic Exotoxin B Induced apoptosis in A549 cells is mediated by a receptor and mitochondrion-dependent pathway. Infect. Immun. 12:7055-7062, 2004.
    Vincents, B., von Pawel-Rammingen, U., Bjorck, L. and Abrahamson, M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry. 43:15540-15449, 2004.
    von Pawel-Rammingen, U., Johansson, B. P. and Bjorck, L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 21:1607-1615, 2002.
    von Pawel-Rammingen, U. and Bjorck, L. IdeS and SpeB: immunoglobulin -degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6:50-55, 2003.
    Wenig, K., Chatwell, L., von Pawel-Rammingen, U., Bjorck, L., Huber, R. and Sondermann, P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc. Natl. Acad. Sci. U S A. 101:17371-17376, 2004.
    Wolf, B. B., Gibson, C. A., Kapur, V., Hussaini, I. M., Musser, J. M. and Gonias, S. L. Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell urokinase receptor and releases an active fragment of the receptor from the cell surface. J. Biol. Chem. 269:30682-30687, 1994.
    Yeh, C.-H., Peng, H.-C. and Huang. T.-F. Accutin, new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin v3 antagonist and inducing apoptosis. Blood 92:3268-3276, 1998.
    Yonaha, K., Elliott, S. D. and Liu, T-Y. Primary structure of zymogen of streptococcal protease. J. Protein Chem. 1:317-334, 1982.
    Zhu, L., Ling, S., Yu, X. D., Venkatesh, L. K., Subramanian, T., Chinnadurai, G. and Kuo, T. H. Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2. J. Biol. Chem. 274:33267-33273, 1999.
    Zychlinsky, A., Prevost, M. C. and Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167-169, 1992.
    行政院衛生署疫情報導 “噬肉菌-A群鏈球菌感染性壞疽-在臺灣之現況分析” 12(7):201-211, 1996.
    陳秋月 Expression and characterization of streptococcal pyogenic Exotoxin B 國立成功大學生物化學研究所碩士論文. 1999.
    蔡宛樺 Studies on the Streptococcal Pyrogenic Exotoxin B-induced Apoptosis in A549 cell 國立成功大學生物化學研究所碩士論文. 2000.

    下載圖示 校內:2008-08-15公開
    校外:2008-08-15公開
    QR CODE