| 研究生: |
林奕辰 Lin, Yi-Chen |
|---|---|
| 論文名稱: |
聚乳酸/水滑石奈米複合材料之製備以及其性質的研究 Study on the Preparation and Properties of the LDHs/poly(lactic acid) nanocomposites |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 水滑石 、聚乳酸 、奈米複合材料 |
| 外文關鍵詞: | LDH, Poly(lactic acid), Nanocomposites |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水滑石為一種易於人工合成的層狀材料,可以用以代替一般所常用的層狀矽酸鹽類製做奈米複材,本研究以共沉澱法合成乳酸寡聚物插層之水滑石(LDH-L),再將其與聚乳酸聚合物進行混摻,以製得具剝層分散之奈米層狀聚乳酸複合材料。其中,LDH-L以XRD分析其層間距(層間距為1.47nm),並以TEM觀測其層狀結構。研究中先分別於155、180、200℃將鏈延長劑與聚乳酸混摻後,藉由GPC及DSC分析得知使用200℃的混摻温度能夠較快得到高分子量及好的結晶性之聚乳酸。另一方面,本文再以EBA作為LDH的插層助劑製成LDH-L(EBA)。LDH-L(EBA)及鏈延長劑與聚乳酸進行熔融混摻後,以XRD、SAXS、TEM分析得知其為插層型奈米複合材料;經DSC與GPC量測結果得知鏈延長劑可以有效抑制水解,EBA及鏈延長劑能作為成核劑加快聚乳酸結晶,而水滑石層板則會降低結晶速度;從DMA得知水滑石之添加亦可增加了複材之剛性及玻璃轉移溫度;光學顯微鏡的觀測結果也同樣的顯示出複材的成核點數確實隨LDH-L(EBA)添加而大幅增加,且聚乳酸結晶尺寸變小。最後,本文測試添加水滑石之聚乳酸奈米複合材料之氣體透氣性,結果顯示複材之氮氣透過率從0.984降至0.295 barrier,二氧化碳透過率從0.729降至0.226 barrier,成功地達到提升阻氣性的效果。
It is convenient to synthesize Layered double hydroxides (LDH) that can be used as an alternative to the commonly used silicate crystals for the preparation of polymeric nanocomposites. In this work, we synthesized organol LDHs (LDH-L) which is modified by oligomer of lactic acid via co-precipitation method. The basal space of LDH-L was investigated by XRD (basal space : 1.47nm), and the structure of LDH-L was investigated by means of FT-IR,EDS,EA,ICP Mass and TGA. The morphologies were observed by TEM. We prepared chain extender/PLA composite by melt-mixing at different temperature. The molecular weight and crystallization behavior of these composites were characterized by GPC and DSC. The results suggest that preparation of the nanocomposites at 200oC is preferred . Then we prepared LDH-L(EBA) by intercalation of EBA. After that we prepared LDH-L(EBA)/chain extender/PLA nanocomposite by melt-mixing. The dispersion of LDH-L(EBA) were investigated by means of XRD,SAXS,TEM. It can be found that the intercalated nanocomposites were obtained by melting compound. Then we characterized the nanocomposites by using DSC,GPC,POM,DMA. It was found that the incorporation of EBA and chain extender can function as nucleate agent by increasing the crystallization rate of PLA. However, the crystallization rate of PLA decreases with the addition of LDH-L. The stiffness of the nanocomposites and Tg increase with the addition of LDH-L. Besides, the gas permeability of the nanocomposites decrease with the addition of LDH-L. For nitrogen barrier analysis, the LDH-L(EBA)/PLA nanocomposites dropped from 0.984 to 0.295 barrier. For carbon dioxide barrier analysis, the nanocomposites dropped from 0.729 to 0.226 barrier.
1.Cavani F , Trifiro F , Vaccari A. Catal Today 11:173;1991
2.Brindley G.W, Kikkawa S, Amer Min 64:836;1979
3.Shannon R.D, Acta Crystallogr A32:751;1976
4.Zhao Y, Li F, Zhang R, Evans D.G , Duan X, Chem Mater 14:4286;2002
5.Chibwe K, Jones W, J Chem Soc Chem Commun 14:926;1989
6.Miyata S, Okada A, Clays Clay Miner 25:14;1977
7.Miyata S, Clays Clay Miner 31:305;1983
8.Xu Z.P, Braterman P.S, J Mater Chem 13:268;2003
9.Charles M.N, Wang D, Hossenlopp J.M, Wilkie C.A, J Mater Chem 18:3091;2008
10.Aisawa S, Takahashi S, Ogasawara W, Umetsu Y, Narita E, J Solid State Chem 162:52;2001
11.Oh J.M, Hwang S.H, Choy J.H, Solid State Ionics 151:285;2002
12.Carlino S, Hudson M.J, Husain S.W, Knowles J.A, Solid State Ionic 84:117;1996
13.Li L, Luo Q.S, Duan X, J Mater Chem Let 21:439;2002
14.Zilg C, Thomson R, Millhaupt R, Finter J, Advanced Materials 11:49;1999
15.Pinnavaia T. J, Beall G.W, Polymer-Clay Nanocomposites, John Wiley & Sons, New York, 2000
16.Su S, Wilkie C.A, J Polym Sci, Polym Chem 41:1124;2003
17.Zhu J, Morgan A.B, Lamelas F.L, Wilkie C.A, Chem Mater 13:3774;2001
18.Zhu J, Uhl F.M, Morgan A.B, Wilkie C.A, Chem Mater 13:4649;2001
19.Fischer H.R, Gielgen L.H, Koster TPM, Acta Polym 50:122;1999
20.Leroux F, Besse J.P, Chemistry of Materials 13: 3507;2001
21.Challier T, Slade R.C.T, J Mater Chem 4:367;1994
22.Tanaka M, Park I.Y, Kuroda K, Kato C, Bull Chem Soc of Jpn 62:3442;1989
23.Roland-Swanson C, Besse J.P, Leroux F, Chem Mater 16:5512;2004
24.Rey S, Mérida-Robles J, Han K.S, Guerlou-Demourgues L, Delmas C, Duguet E, Polym Int 48:277;1999
25.Wang G.A, Wang C.C, Chen C.Y, Polymer 46:5065;2005
26.Hsueh H.B, Chen C.Y, Polymer 44:5275;2003
27.Ramaraj B, Jaisankar S.N, Polym-Plast Technol Eng 47:733;2008
28.Qiu L, Chen W, Qu B, Polym Degrad Stab 87:433;2005
29.Oriakhi C.O, Farr I.V, Lerner M.M, J Mater Chem 6:103;1996
30.Wang L, Su S, Chen D, Wilkie C.A, Polym Degrad Stab 94:770;2009
31.Lee W.D, Im S.S, Lim H.M, Kim K.J, Polymer 47:1364;2006
32.Du L, Qu B, Zhang M, Polym Degrad Stab 92:497;2007
33.Ding P, Qu B.J, Polym Eng Sci 46:1153;2006
34.Du L.C, Qu B.J, J Mater Chem 16:1549;2006
35.Bikiaris D. N, Karayannidis G.P, J Polym Sci Part A: Polym Chem 34:1337;1996
36.Bikiaris D. N, Karayannidis G.P, J Appl Polym Sci 60:55;1996
37.Zhou Z, Yin N, Zhang Y, Zhang Y, J Appl Polym Sci 107:825;2008
38.Pilla S, Kramschuster A, Yang L, Lee J, Gong S, Turng L.S, Mater Sci Eng 29:1258;2009
39.Inata H, Matsumura S, J Appl Polym Sci 32:5193;1986
40.Avrami M, J Chem Phys 7:1103;1939
41.Avrami M, J Chem Phys 8:212;1940
42.Avrami M, J Chem Phys 9:177;1941
43.Pan P, Zhu B, Dong T, Inoue Y, J Polym Sci, Part B: Polym Phys 46:2222;2008
44.Tsai T.Y, Lin W.H, Lin Y.Y, Hsu Y.C, Ray U, Desalination 233:183;2008
校內:2021-12-31公開