簡易檢索 / 詳目顯示

研究生: 何欣怡
Ho, Hsin-Yi
論文名稱: 具有螢光特性之中孔洞二氧化矽包覆矽酸釓奈米殼作為T2顯影試劑
New fluorescent Gd3+-chelated Gd silicate@SiO2 nanostructures as T2 contrast agents
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 矽酸釓
外文關鍵詞: Gd silicate, MRI
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一種新的磁性奈米粒子:矽酸釓螢光(Gd silicate:FITC)奈米殼粒子作為核心,表面修飾中孔洞二氧化矽殼層,釓離子錯合物(DOTA-Gd3+)修飾於中孔洞二氧化矽殼的孔洞內,形成Gd3+-chelated Gd silicate:FITC@SiO2奈米殼粒子。實驗結果顯示,Gd3+-chelated Gd silicate:FITC@SiO2奈米顆粒的橫向遲緩速率會隨著外加磁場增大而增加,由 65.411 s-1mM-1 (3T) 到342.8 s-1mM-1 (7T),橫向遲緩速率增加的原因可能與奈米結構的幾何束縛效應、釓離子間的偶極相互作用與居里自旋弛緩有關。本研究使用的奈米顆粒中心為矽酸釓螢光奈米殼粒子,形狀為中空球形,尺寸約為50~60 nm,我們除了研究Gd silicate:FITC奈米粒子的合成反應外,也發展中孔洞二氧化矽殼層包覆於Gd silicate:FITC奈米粒子外緣的技術,中孔洞二氧化矽殼層可作為DOTA螯合劑的支撐物,DOTA-Gd3+錯合物能錨釘於殼層內部中孔矽通道。具有橫向遲緩速率加強的Gd3+-chelated Gd silicate:FITC@mSiO2奈米顆粒展現核磁共振顯影(MRI)顯著成像效果,能同時展現T1加權影像(影像變亮)和T2加權影像(影像變暗),尤其以T2的顯影效果比Gd silicate:FITC與其他種類的Gd型顯影劑來的更強,此外,Gd3+-chelated Gd silicate:FITC@SiO2奈米顆粒含有FITC螢光分子產生綠螢光的特性能應用作細胞螢光標定的功能。

    A new magnetic Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites was synthesized comprised of Gd silicate:FITC nanoshells (50~60 nm) and Gd-chelated mesoporous silica coating layer (20nm), where the Gd silicate:FITC nanoshell served as a core center encapsulated with mesoporous silica shell. The Gd silicate:FITC nanostructure exhibited a hollow interior. DOTA-NHS molecules were used to anchor to the interior channels of the mesoporous silica to be able to chelate Gd3+ ions, resulting in Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites. Because of the existence of Gd3+ ions within the mesoporous silica nanolayer, the transverse relaxivity increased with increasing the magnetic field. The transverse relaxivity of Gd3+-chelated Gd silicate:FITC@SiO2 nanoparticles increased from 65.411 s-1mM-1 (3T) values up to342.8 s-1mM-1 (7T) when the magnetic field increased from 3T to 7T. The increased transverse relaxivity is attributable to the contributions of geometrical confinement effect, dipolar interaction between neighboring Gd3+- Gd3+ions, and Curie spin relaxation. The large transversal relaxivity of the Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites had an effective magnetic resonance imaging effect, which simultaneously provided T1– and T2– weighted images. The Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites exhibited a highest relaxivity than that of Gd silicate:FITC nanoshells and the other Gd-based species. Moreover, the Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites emitted green fluorescence, and the nanocomposites immobilized with antibody could perform specific targeting to cancer cells to display fluorescent imaging probes.

    目錄 第一章 緒論…………….………………………………………1 1-1.奈米材料簡介 ………………………………………………2 1-2.磁性奈米材料…………………………………………………3 1-2-1.材料的磁特性………………………………………3 1-2-2.磁滯曲線……………………………………………4 1-2-3. 溫度對於磁性物質的影響………………………5 1-2-4. 磁性奈米材料……………………………………6 1-2-5. 順磁性奈米材料…………………………………6 1-2-6. 超順磁性奈米材料………………………………9 1-3. 金屬矽酸鹽奈米材料之簡介………………………………10 第二章 實驗藥品與儀器設備……………………………………17 2-1. 化學藥品……………………………………………………18 2-2. 儀器設備……………………………………………………20 第三章 矽酸釓螢光奈米殼外 圍包覆中孔洞二氧化矽螯合釓離子之合成與應用…..23 3-1. 研究動機與目的……………………………………………24 3-2. 中孔洞二氧化矽之矽酸釓螢光奈米殼螯合釓離子之合成……………25 3-2-1. 合成矽酸釓奈米殼 ( Gd silicate) …………………………………………..25 3-2-2. 合成矽酸釓螢光奈米殼 ( Gd silicate:FITC) …………………25 3-2-3. 合成中孔洞二氧化矽的矽酸釓螢光奈米殼 (Gdsilicate:FITC@SiO2).....25 3-2-4. 中孔洞二氧化矽的矽酸釓螢光奈米殼 (Gdsilicate:FITC@SiO2)表面修飾來螯合釓離子………………………26 3-2-5. 核磁共振顯影之T1 、T2、r1 、r2的樣品製備…………26 3-2-6. 細胞毒性測試…………………………………………………26 3-2-7. 暗場顯微鏡之觀察……………………………………………27 3-3. 實驗結果與討論………………………………………………………29 3-3-1. 矽酸釓奈米殼 (Gd silicate)物理化學性質:TEM、EDS……29 3-3-2. 矽酸釓螢光奈米殼 (Gd silicate:FITC)物理化學性質:TEM 、PL spectra、Stability、XPS、SOUID…………………………………………………33 3-3-3. 中孔洞二氧化矽的矽酸釓螢光奈米殼 (Gdsilicate:FITC@SiO2) 物理化學性質:TEM………………………………………………40 3-3-4. 中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子……………42 3-3-5. 中孔洞二氧化矽的矽酸釓螢光奈米殼(Gd silicate:FITC@SiO2)螯合其他金屬離子:銪離子 (Europium ions)和銦離子(Indium)…………………49 3-3-5-a. (Eu3+- chelated Gd silicate:FITC@SiO2)中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銪離子之物理化學性質:TEM 、PL spectra…….49 3-3-5-b. (In3+- chelated Gd silicate:FITC@SiO2)中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銦離子之物理化學性質:HR-TEM 、EDS、XPS……51 3-3-6. 中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之MRI顯影結果 (Gd3+-chelated Gd silicate:FITC@SiO2)……………………………56 3-3-7. 中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之毒性測試 (Gd3+-chelated Gd silicate:FITC@SiO2)……………………………60 3-3-8. 暗場顯微鏡之觀察………………………………………………64 第四章 結論………………………………………………………………………67 參考文獻…………………………………………………………………………68 表目錄 表1.螯合劑DOTA與金屬離子的熱穩定常數……………………………………49 表2.矽酸釓螢光奈米殼在不同磁場下MRI之遲緩率(relaxivity,s-1mM-1)…………57 圖目錄 圖1-1. 不同磁性材料之磁性原子自旋磁矩組態………………………………3 圖1-2. 鐵磁材料磁滯曲線示意圖………………………………………………4 圖1-3. 順磁材料磁滯曲線示意圖………………………………………………5 圖1-4. GdPO4奈米粒子(PGP/dextran-K1) ……………………7 圖1-5. CdSe/ZnMnS 量子點………………………………………………7 圖1-6. CdSe:Gd量子點………………………………………………………7 圖1-7. Mn3O4奈米粒子……………………………………………………8 圖1-8. 表面接有DOTA-Gd 之二氧化矽奈米管(SNDG) ……….……………9 圖1-9. Gd3+-chelated Fe3O4@SiO2奈米顆粒注入小鼠的 T2顯影.....10 圖1-10. 矽酸鹽奈米管(silicate nanotubes)………………………………………………12 圖1-11. 矽酸鋁籠狀中空結構 (cagelike hollow aluminosilicate).. 13 圖1-12. 矽酸鹽結構:正四面體以(a)錬狀、(b)雙鍊狀和(c)片狀方式連結....13 圖1-13. 矽酸鋅奈米結構之TEM圖: (a)中空球,(b)奈米線和(c)薄膜狀;Table 1為不同形貌的矽酸鋅移除金屬離子的比較………………14 圖1-14. 人類骨骼衍生細胞(HBDC)附著CaSiO3 (a,b)、CaTiSiO5 (c,d)之SEM圖…….14 圖1-15. (a)矽酸鋁籠狀中空結構包覆紅色螢光蛋白質之示意圖和(b)螢光顯微鏡影像圖………………………………………………………………………15 圖1-16. (a)外圍包覆二氧化矽之摻雜鉍的矽酸鋁奈米粒子之TEM圖,(b)為未注射奈米粒子之老鼠組織的自體螢光影像和(c)為注射奈米粒子至老鼠頸部30分鐘後的螢光影像圖…………………………………………………...15 圖1-17. (a)矽酸釓奈米殼(gd silicate) 400 oC鍛燒後的藍色螢光圖、(b)矽酸釓奈米殼摻雜銪離子(gd silicate:Eu) 860 oC鍛燒後的紅色螢光圖、(c)矽酸釓奈米殼(gd silicate) 400 oC鍛燒後的T1和T2加權影像圖和(d)矽酸釓奈米殼摻雜銪離子(gd silicate:Eu) 860 oC鍛燒後的T1和T2加權影像圖……………......16 圖3-1.合成矽酸釓奈米殼之流程圖……………………………………………30 圖3-2.矽酸釓奈米殼之(a) TEM圖(大小約為52.45±7.85nm)、 (b) HR-TEM圖(箭頭所指的區域為較深色O型結構的影像,約8nm,內含釓離子成分)和(c) 經過4.5M鹽酸侵蝕後的矽酸釓奈米殼的高解析穿透式顯微鏡影像……30 圖3-3. (a)矽酸釓奈米殼之EDS圖 (b)矽酸釓奈米殼於4.5M鹽酸溶液進行蝕刻之EDS圖……………………………………………………………………….31 圖3-4.Gd(acac)3分子被夾在矽酸鹽層中之示意圖…………………………32 圖3-5.合成矽酸釓螢光奈米殼之流程圖………………………………………35 圖3-6.矽酸釓螢光奈米殼之(a) TEM圖(大小約為56.9±5.85nm)和(b)在UV 燈激發下,矽酸釓螢光奈米殼內的FITC螢光分子所放射出綠色螢光(放射波長525 nm)之影像圖…………………………………………………….………35 圖3-7.FITC螢光分子(綠色標記線條) 及矽酸釓螢光奈米殼(Gd silicate:FITC,黃色標記線條)之螢光光譜圖(激發波長465nm,放射波長525nm)……………..…..36 圖3-8.矽酸釓螢光奈米殼在37℃、pH7.4 的PBS緩衝溶液中,FITC螢光分子漏出量與時間的關係圖…………………………………………………………36 圖3-9.矽酸釓螢光奈米殼之釓離子XPS圖……………………………………37 圖3-10.矽酸釓螢光奈米殼之氧離子XPS圖……………………………………37 圖3-11.矽酸釓螢光奈米殼之矽離子XPS圖……………………………………38 圖3-12.矽酸釓螢光奈米殼之遲滯曲線,內插圖為溫度300K下遲滯曲線的放大圖…39 圖3-13.矽酸釓螢光奈米殼之ZFC-FC (zero-field cooling和field cooling)圖………….39 圖3-14.矽酸釓螢光奈米殼外面包覆一層中孔洞二氧化矽之TEM圖(a,b),中孔洞二氧化矽殼層厚約為20.03±0.79nm、孔洞大小約為2.31±0.41nm………40 圖3-15.中孔洞二氧化矽的矽酸釓螢光奈米殼之SEM圖………………………41 圖3-16.矽酸釓螢光奈米殼外面包覆一層較厚的中孔洞二氧化矽之TEM圖(a,b)中孔洞二氧化矽殼層厚約為33.76±3.9nm、孔洞大小約為2.23±0.35nm………41 圖3-17.利用APTES將中孔洞二氧化矽衍生化外露胺基之示意圖……………44 圖3-18.以中孔洞二氧化矽外露胺基與DOTA-NHS ester反應形成醯胺鍵之示意圖..45 圖3-19.釓錯合物DOTA-Gd的化學結構圖………………………………………45 圖3-20.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之TEM圖…………46 圖3-21.Gd silicate:FITC(藍色)、Gd silicate:FITC@SiO2(紅色)、APTES treated Gd silicate:FITC@SiO2(綠色:APTES一倍劑量,黑色: APTES兩倍劑量)和DOTA treated Gd silicate:FITC@SiO2(紫色)之FTIR圖……………………………….46 圖3-22. 中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之氮氣吸附脫附等溫曲線(BET)圖………………………………………………………………47 圖3-23. 中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之孔徑分佈圖…47 圖3-24.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子在37℃、pH7.4 的PBS緩衝溶液中,釓離子漏出量與時間的關係圖………………………………48 圖3-25.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合釓離子之螢光光譜圖(激發波長465nm,放射波長514 nm ) ……………………………………………………...48 圖3-26.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銪離子之螢光光譜圖(激發波長240nm,放射波長590 nm : 5D0 →7F1 以及614nm : 5D0 →7F2)……50 圖3-27.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銪離子在520℃鍛燒後之TEM圖…………………………………………………………………………………51 圖3-28.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銦離子之HR-TEM圖 (中孔洞二氧矽殼層厚約為19.91 3.35 nm ) …………………...………………………53 圖3-29.中孔洞二氧化矽的矽酸釓螢光奈米殼(中孔洞二氧化矽殼層厚約為19.91 3.35 nm )螯合銦離子之能量分散光譜圖以及 O、Si、In、Gd的元素比例…………53 圖3-30.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銦離子之HR-TEM圖(中孔洞二氧化矽殼層厚約為34.75 1.75 nm ) ……………………………………………...…....54 圖3-31.中孔洞二氧化矽的矽酸釓螢光奈米殼 (中孔洞二氧化矽殼層厚約34.75 1.75 nm )螯合銦離子之能量分散光譜圖以及 O、Si、In、Gd的元素比例……………….54 圖3-32.中孔洞二氧化矽的矽酸釓螢光奈米殼之銦離子XPS圖………………55 圖3-33.中孔洞二氧化矽的矽酸釓螢光奈米殼螯合銦離子之銦離子XPS圖…55 圖3-34-a. 在磁場為3T下,Gd3+的濃度對1/T1之線性迴歸圖,斜率即為遲緩率r1……58 圖3-34-b. 在磁場為3T下,Gd3+的濃度對1/T2之線性迴歸圖,斜率即為遲緩率r2……58 圖3-35-a. 在磁場為7T下,Gd3+的濃度對1/T1之線性迴歸圖,斜率即為遲緩率r1……59 圖3-35-b. 在磁場為7T下,Gd3+的濃度對1/T2之線性迴歸圖,斜率即為遲緩率r2……59 圖3-36.為Gd silicate:FITC、APTES treated Gd silicate:FITC和 Gd3+-chelated Gd silicate:FITC@SiO2之MTT結果圖示………………62 圖3-37.為Gd3+-chelated Gd silicate:FITC@SiO2、PSS coated Gd3+-chelated Gd silicate:FITC@SiO2和PSMA coated Gd3+-chelated Gd silicate:FITC@SiO2之MTT結果圖示……………………62 圖3-38.為PSS coated Gd3+-chelated Gd silicate:FITC@SiO2、PEI@PSS coated Gd3+-chelated Gd silicate:FITC@SiO2和PSS@PEI@PSS coated coated Gd3+-chelated Gd silicate:FITC@SiO2之MTT結果圖示…………………………63 圖3-39.為anti-EGFR treated Gd3+-chelated Gd silicate:FITC@SiO2之MTT結果圖示….63 圖3-40. A549細胞與Anti-EGFR treated Gd3+-chelated Gd silicate:FITC@SiO2專一性結合示意圖…………………………………65 圖3-41. Anti-EGFR treated Gd3+-chelated Gd silicate:FITC@SiO2在暗場顯微鏡下的影像:(a)材料在散射光模式下的影像、(b)材料在螢光模式下的影像…………….65 圖3-42. (a)列 A549細胞(控制組) 之螢光與暗場影像圖((a-2) 控制組之放大倍率影像圖)和(b)列 anti-EGFR treated Gd3+-chelated Gd silicate:FITC@SiO2與細胞培養1小時之螢光與暗場影像圖((b-2):材料與細胞之放大倍率影像圖)……………..66

    1. Cheng,F.Y.; Saprina P.H. Wang, C.H. Su, T.L. Tsai, P.C. Wu, D.B. Shieh, J.H Chen, Patrick C.H. Hsieh, C.S. Yeh.” Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes “ Biomaterials. 29, 2104-2112 (2008).
    2. S. Santra, R.P. Bagwe, D. Dutta, J.T. Stanley, G.A. Walter, W. Tan, B.M. Moudgil, R.A. Mericle.”Synthesis and Characterization of Fluorescent,Radio-Opaque,and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications” Adv. Mater. 17, 2165-2169 (2005).
    3. Y.S. Lin, S.H. Wu, Y. Hung, Y.H. Chou, C. Chang, M.L. Lin, C.P. Tsai, C.Y. Mou.” Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous “ Chem. Mater. 18, 5170-5172 (2006).
    4. J. Kim, J.E. Lee, S.H. Lee, J.H. Yu, J.H. Lee, T.G. Park, T. Hyeon.” Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery” Adv. Mater. 20, 478-483 (2008) .
    5. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon.” Doxorubicin-loaded poly(ethylene glycol)–poly(b-benzyl-Laspartate) copolymer micelles: their pharmaceutical characteristics and biological significance” J.Controlled Release 64,143-153 (2000).
    6. X. Shuai, H. Ai, N. Nasongkla, S. Kim, J. Gao.” Micellar carriers based on block copolymers of poly(q-caprolactone) and poly(ethylene glycol) for doxorubicin delivery” J.Controlled Release. 98, 415-426 (2004).
    7. 張芳瑜, “磁共振造影及光熱治療之雙功能複合材料的製備與探討”, 國立成功大學化學研究所,(2008).
    8. Hiroki Hifumi, Seiichi Yamaoka, Akihiro Tanimoto, Daniel Citterio, and Koji Suzuki.” Gadolinium-Based Hybrid Nanoparticles as a Positive MR Contrast Agent “ J. AM. CHEM. SOC. 128, 15090-15091 (2006).
    9. Shizhong Wang, Benjamin R. Jarrett, Susan M. Kauzlarich, and Angelique Y. Louie. ” Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. AM.CHEM SOC. 129, 3848-3856 (2007).
    10. I-Fang Li and Chen-Sheng Yeh.” Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications” J. Mater. Chem. 20, 2079–2081 (2010).
    11. Chih-Chia Huang , Ngee-Huat Khu , Chen-Sheng Yeh .” The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies” Biomaterials 31, 4073–4078 (2010).
    12. Heesun Yang, Swadeshmukul Santra, Glenn A. Walter, and Paul H. Holloway.” GdIII-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes” Adv. Mater. 18, 2890–2894 (2006).
    13. Kuo-Wei Hu, Kang-Che Hsu, Chen-Sheng Yeh.” pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging” Biomaterials 31, 6843-6848 (2010).
    14. Chih-Chia Huang,Chiau-Yuang Tsai,Hwo-Shuenn Sheu, Kuei-Yi Chuang, Chiu-Hun Su, U-Ser Jeng, Fong-Yu Cheng, Chia-Hao Su, Huan-Yao Lei, and Chen-Sheng Yeh “Enhancing Transversal Relaxation for Magnetite Nanoparticles in MR Imaging Using Gd3+-Chelated Mesoporous Silica Shells” ACS Nano 5,3905-3916 (2011).
    15. Xun Wang, Jing Zhuang, Jun Chen, Kebin Zhou, and Yadong Li. “Thermally Stable Silicate Nanotubes” Angew. Chem. Int. Ed. 43, 2017 –2020 (2004).
    16. Toru Shiomi, Tatsuo Tsunoda, Akiko Kawai, Shun-ichi Matsuura, Fujio Mizukami,and Kengo Sakaguchi. “Synthesis of a Cagelike Hollow Aluminosilicate with Vermiculate Micro-Through-Holes and its Application to Ship-In-Bottle Encapsulation of Protein” small 5, 67–71 (2009).
    17. Yan Yang, Yuan Zhuang, Yunhua He, Bo Bai, and Xun Wang. “Fine Tuning of the Dimensionality of Zinc Silicate Nanostructures and Their Application as Highly Efficient Absorbents for Toxic Metal Ions” Nano Res 3, 581–593 (2010).
    18. Chengtie Wu, Yogambha Ramaswamy, Andhika Soeparto, Hala Zreiqat. “Incorporation of titanium into calcium silicate improved their chemical stability and biological properties” J. Bio. Mater. Res. Part A, 86,402-410 (2008).
    19. Hong-Tao Sun, Junjie Yang , Minoru Fujii , Yoshio Sakka , Yufang Zhu ,Takayuki Asahara , Naoto Shirahata , Masaaki Ii , Zhenhua Bai , Ji-Guang Li ,and Hong Gao. “Highly Fluorescent Silica-Coated Bismuth-Doped
    Aluminosilicate Nanoparticles for Near-Infrared Bioimaging” small 7, 199–203 (2011).
    20. Chih-Chia Huang, Wileen Huang, Chia-Hao Su,Chieh-Ning Feng,Wen-Shuo Kuo and Chen-Sheng Yeh.” A general approach to silicate nanoshells: gadolinium silicate and gadolinium silicate:europium nanoshells for dual-modality optical and MR imaging” Chem. Commun. 23,3360–3362 (2009).
    21. Chih-Chia Huang,Chiau-Yuang Tsai,Hwo-Shuenn Sheu, Kuei-Yi Chuang, Chiu-Hun Su, U-Ser Jeng, Fong-Yu Cheng, Chia-Hao Su, Huan-Yao Lei, and Chen-Sheng Yeh “Enhancing Transversal Relaxation for Magnetite Nanoparticles in MR Imaging Using Gd3+-Chelated Mesoporous Silica Shells” ACS Nano 5,3905-3916 (2011).
    22. Jong Rack Sohn and Sang Il Lee.” Adsorption Study of Acetylacetone on Cation-Exchanged Montmorillonite by Infrared Spectroscopy” Langmuir16, 5024-5028 (2000).
    23. J. Byegard, G. Skarnemark, M. Skalberg.” The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies” Journal of Radioanalytical and Nuclear Chemistry Vol. 241, No.2, 281-290 (1999).
    24. Duarte Ananias,Stanislav Ferdov,Filipe A. Almeida Paz,Rute A. Sá Ferreira, Artur Ferreira,Carlos F. G. C. Geraldes, Luís D. Carlos, Zhi Lin,and João Rocha.” Photoluminescent Layered Lanthanide Silicate Nanoparticles” Chem. Mater. 20, 205–212 (2008).
    25. XMHan, J Lin, R B Xing, J Fu, S BWang and Y C Han.” Preparation, patterning and luminescent properties of oxyapatite La9.33(SiO6)4O2:A (A = Eu3+, Tb3+, Ce3+) phosphor films by sol–gel soft lithography” J. Phys.: Condens. Matter 15 2115–2126 (2003).
    26. Gueron, M. “Nuclear Relaxation in Macromolecules by Paramagnetic Ions: A Novel Mechanism” J. Magn. Reson. 19, 58–66 (1975).
    27. Mauro Botta.” Second Coordination Sphere Water Molecules and Relaxivity of Gadolinium(III) Complexes: Implications for MRI Contrast Agents” Eur. J. Inorg. Chem. 399-407 (2000).
    28. Powell, D. H.; Ni Dhubhghaill, O. M.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E.” Structural and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd3+Com- plexes of Interest in Magnetic Resonance Imaging: An Integrated and Theoretically Self-Consistent Approach” J. Am. Chem. Soc. 118, 9333–9346 (1996).
    29. Nastassja Lewinski, Vicki Colvin, and Rebekah Drezek.” Cytotoxicity of Nanoparticles” small 4, 26-49 (2008).
    30. Hongwei Duan and Shuming Nie. “Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings” J. AM.CHEM.SOC 129, 3333-3338 (2007).
    31. Catherine M. Goodman, Catherine D. McCusker, Tuna Yilmaz, and Vincent M. Rotello.” Toxicity of Gold Nanopaticles Functionalized with Cationic and Anionic Side Chains” Bioconjugate Chem. 15, 897-900 (2004).

    無法下載圖示 校內:2013-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE