| 研究生: |
何欣怡 Ho, Hsin-Yi |
|---|---|
| 論文名稱: |
具有螢光特性之中孔洞二氧化矽包覆矽酸釓奈米殼作為T2顯影試劑 New fluorescent Gd3+-chelated Gd silicate@SiO2 nanostructures as T2 contrast agents |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 矽酸釓 |
| 外文關鍵詞: | Gd silicate, MRI |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展一種新的磁性奈米粒子:矽酸釓螢光(Gd silicate:FITC)奈米殼粒子作為核心,表面修飾中孔洞二氧化矽殼層,釓離子錯合物(DOTA-Gd3+)修飾於中孔洞二氧化矽殼的孔洞內,形成Gd3+-chelated Gd silicate:FITC@SiO2奈米殼粒子。實驗結果顯示,Gd3+-chelated Gd silicate:FITC@SiO2奈米顆粒的橫向遲緩速率會隨著外加磁場增大而增加,由 65.411 s-1mM-1 (3T) 到342.8 s-1mM-1 (7T),橫向遲緩速率增加的原因可能與奈米結構的幾何束縛效應、釓離子間的偶極相互作用與居里自旋弛緩有關。本研究使用的奈米顆粒中心為矽酸釓螢光奈米殼粒子,形狀為中空球形,尺寸約為50~60 nm,我們除了研究Gd silicate:FITC奈米粒子的合成反應外,也發展中孔洞二氧化矽殼層包覆於Gd silicate:FITC奈米粒子外緣的技術,中孔洞二氧化矽殼層可作為DOTA螯合劑的支撐物,DOTA-Gd3+錯合物能錨釘於殼層內部中孔矽通道。具有橫向遲緩速率加強的Gd3+-chelated Gd silicate:FITC@mSiO2奈米顆粒展現核磁共振顯影(MRI)顯著成像效果,能同時展現T1加權影像(影像變亮)和T2加權影像(影像變暗),尤其以T2的顯影效果比Gd silicate:FITC與其他種類的Gd型顯影劑來的更強,此外,Gd3+-chelated Gd silicate:FITC@SiO2奈米顆粒含有FITC螢光分子產生綠螢光的特性能應用作細胞螢光標定的功能。
A new magnetic Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites was synthesized comprised of Gd silicate:FITC nanoshells (50~60 nm) and Gd-chelated mesoporous silica coating layer (20nm), where the Gd silicate:FITC nanoshell served as a core center encapsulated with mesoporous silica shell. The Gd silicate:FITC nanostructure exhibited a hollow interior. DOTA-NHS molecules were used to anchor to the interior channels of the mesoporous silica to be able to chelate Gd3+ ions, resulting in Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites. Because of the existence of Gd3+ ions within the mesoporous silica nanolayer, the transverse relaxivity increased with increasing the magnetic field. The transverse relaxivity of Gd3+-chelated Gd silicate:FITC@SiO2 nanoparticles increased from 65.411 s-1mM-1 (3T) values up to342.8 s-1mM-1 (7T) when the magnetic field increased from 3T to 7T. The increased transverse relaxivity is attributable to the contributions of geometrical confinement effect, dipolar interaction between neighboring Gd3+- Gd3+ions, and Curie spin relaxation. The large transversal relaxivity of the Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites had an effective magnetic resonance imaging effect, which simultaneously provided T1– and T2– weighted images. The Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites exhibited a highest relaxivity than that of Gd silicate:FITC nanoshells and the other Gd-based species. Moreover, the Gd3+-chelated Gd silicate:FITC@SiO2 nanocomposites emitted green fluorescence, and the nanocomposites immobilized with antibody could perform specific targeting to cancer cells to display fluorescent imaging probes.
1. Cheng,F.Y.; Saprina P.H. Wang, C.H. Su, T.L. Tsai, P.C. Wu, D.B. Shieh, J.H Chen, Patrick C.H. Hsieh, C.S. Yeh.” Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes “ Biomaterials. 29, 2104-2112 (2008).
2. S. Santra, R.P. Bagwe, D. Dutta, J.T. Stanley, G.A. Walter, W. Tan, B.M. Moudgil, R.A. Mericle.”Synthesis and Characterization of Fluorescent,Radio-Opaque,and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications” Adv. Mater. 17, 2165-2169 (2005).
3. Y.S. Lin, S.H. Wu, Y. Hung, Y.H. Chou, C. Chang, M.L. Lin, C.P. Tsai, C.Y. Mou.” Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous “ Chem. Mater. 18, 5170-5172 (2006).
4. J. Kim, J.E. Lee, S.H. Lee, J.H. Yu, J.H. Lee, T.G. Park, T. Hyeon.” Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery” Adv. Mater. 20, 478-483 (2008) .
5. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon.” Doxorubicin-loaded poly(ethylene glycol)–poly(b-benzyl-Laspartate) copolymer micelles: their pharmaceutical characteristics and biological significance” J.Controlled Release 64,143-153 (2000).
6. X. Shuai, H. Ai, N. Nasongkla, S. Kim, J. Gao.” Micellar carriers based on block copolymers of poly(q-caprolactone) and poly(ethylene glycol) for doxorubicin delivery” J.Controlled Release. 98, 415-426 (2004).
7. 張芳瑜, “磁共振造影及光熱治療之雙功能複合材料的製備與探討”, 國立成功大學化學研究所,(2008).
8. Hiroki Hifumi, Seiichi Yamaoka, Akihiro Tanimoto, Daniel Citterio, and Koji Suzuki.” Gadolinium-Based Hybrid Nanoparticles as a Positive MR Contrast Agent “ J. AM. CHEM. SOC. 128, 15090-15091 (2006).
9. Shizhong Wang, Benjamin R. Jarrett, Susan M. Kauzlarich, and Angelique Y. Louie. ” Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. AM.CHEM SOC. 129, 3848-3856 (2007).
10. I-Fang Li and Chen-Sheng Yeh.” Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications” J. Mater. Chem. 20, 2079–2081 (2010).
11. Chih-Chia Huang , Ngee-Huat Khu , Chen-Sheng Yeh .” The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies” Biomaterials 31, 4073–4078 (2010).
12. Heesun Yang, Swadeshmukul Santra, Glenn A. Walter, and Paul H. Holloway.” GdIII-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes” Adv. Mater. 18, 2890–2894 (2006).
13. Kuo-Wei Hu, Kang-Che Hsu, Chen-Sheng Yeh.” pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging” Biomaterials 31, 6843-6848 (2010).
14. Chih-Chia Huang,Chiau-Yuang Tsai,Hwo-Shuenn Sheu, Kuei-Yi Chuang, Chiu-Hun Su, U-Ser Jeng, Fong-Yu Cheng, Chia-Hao Su, Huan-Yao Lei, and Chen-Sheng Yeh “Enhancing Transversal Relaxation for Magnetite Nanoparticles in MR Imaging Using Gd3+-Chelated Mesoporous Silica Shells” ACS Nano 5,3905-3916 (2011).
15. Xun Wang, Jing Zhuang, Jun Chen, Kebin Zhou, and Yadong Li. “Thermally Stable Silicate Nanotubes” Angew. Chem. Int. Ed. 43, 2017 –2020 (2004).
16. Toru Shiomi, Tatsuo Tsunoda, Akiko Kawai, Shun-ichi Matsuura, Fujio Mizukami,and Kengo Sakaguchi. “Synthesis of a Cagelike Hollow Aluminosilicate with Vermiculate Micro-Through-Holes and its Application to Ship-In-Bottle Encapsulation of Protein” small 5, 67–71 (2009).
17. Yan Yang, Yuan Zhuang, Yunhua He, Bo Bai, and Xun Wang. “Fine Tuning of the Dimensionality of Zinc Silicate Nanostructures and Their Application as Highly Efficient Absorbents for Toxic Metal Ions” Nano Res 3, 581–593 (2010).
18. Chengtie Wu, Yogambha Ramaswamy, Andhika Soeparto, Hala Zreiqat. “Incorporation of titanium into calcium silicate improved their chemical stability and biological properties” J. Bio. Mater. Res. Part A, 86,402-410 (2008).
19. Hong-Tao Sun, Junjie Yang , Minoru Fujii , Yoshio Sakka , Yufang Zhu ,Takayuki Asahara , Naoto Shirahata , Masaaki Ii , Zhenhua Bai , Ji-Guang Li ,and Hong Gao. “Highly Fluorescent Silica-Coated Bismuth-Doped
Aluminosilicate Nanoparticles for Near-Infrared Bioimaging” small 7, 199–203 (2011).
20. Chih-Chia Huang, Wileen Huang, Chia-Hao Su,Chieh-Ning Feng,Wen-Shuo Kuo and Chen-Sheng Yeh.” A general approach to silicate nanoshells: gadolinium silicate and gadolinium silicate:europium nanoshells for dual-modality optical and MR imaging” Chem. Commun. 23,3360–3362 (2009).
21. Chih-Chia Huang,Chiau-Yuang Tsai,Hwo-Shuenn Sheu, Kuei-Yi Chuang, Chiu-Hun Su, U-Ser Jeng, Fong-Yu Cheng, Chia-Hao Su, Huan-Yao Lei, and Chen-Sheng Yeh “Enhancing Transversal Relaxation for Magnetite Nanoparticles in MR Imaging Using Gd3+-Chelated Mesoporous Silica Shells” ACS Nano 5,3905-3916 (2011).
22. Jong Rack Sohn and Sang Il Lee.” Adsorption Study of Acetylacetone on Cation-Exchanged Montmorillonite by Infrared Spectroscopy” Langmuir16, 5024-5028 (2000).
23. J. Byegard, G. Skarnemark, M. Skalberg.” The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies” Journal of Radioanalytical and Nuclear Chemistry Vol. 241, No.2, 281-290 (1999).
24. Duarte Ananias,Stanislav Ferdov,Filipe A. Almeida Paz,Rute A. Sá Ferreira, Artur Ferreira,Carlos F. G. C. Geraldes, Luís D. Carlos, Zhi Lin,and João Rocha.” Photoluminescent Layered Lanthanide Silicate Nanoparticles” Chem. Mater. 20, 205–212 (2008).
25. XMHan, J Lin, R B Xing, J Fu, S BWang and Y C Han.” Preparation, patterning and luminescent properties of oxyapatite La9.33(SiO6)4O2:A (A = Eu3+, Tb3+, Ce3+) phosphor films by sol–gel soft lithography” J. Phys.: Condens. Matter 15 2115–2126 (2003).
26. Gueron, M. “Nuclear Relaxation in Macromolecules by Paramagnetic Ions: A Novel Mechanism” J. Magn. Reson. 19, 58–66 (1975).
27. Mauro Botta.” Second Coordination Sphere Water Molecules and Relaxivity of Gadolinium(III) Complexes: Implications for MRI Contrast Agents” Eur. J. Inorg. Chem. 399-407 (2000).
28. Powell, D. H.; Ni Dhubhghaill, O. M.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E.” Structural and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd3+Com- plexes of Interest in Magnetic Resonance Imaging: An Integrated and Theoretically Self-Consistent Approach” J. Am. Chem. Soc. 118, 9333–9346 (1996).
29. Nastassja Lewinski, Vicki Colvin, and Rebekah Drezek.” Cytotoxicity of Nanoparticles” small 4, 26-49 (2008).
30. Hongwei Duan and Shuming Nie. “Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings” J. AM.CHEM.SOC 129, 3333-3338 (2007).
31. Catherine M. Goodman, Catherine D. McCusker, Tuna Yilmaz, and Vincent M. Rotello.” Toxicity of Gold Nanopaticles Functionalized with Cationic and Anionic Side Chains” Bioconjugate Chem. 15, 897-900 (2004).
校內:2013-07-29公開