簡易檢索 / 詳目顯示

研究生: 陳吉興
Chen, Gi-Sin
論文名稱: 可調式ㄧ維聲子晶體之波傳
Elastic wave propagation of tunable 1-D phononic crystals
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 聲子晶體波傳彈性體
外文關鍵詞: elastic wave, elastomers, phononic crystals
相關次數: 點閱:164下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      本論文中,以有限元素搭配轉換矩陣法模擬彈性波在一維聲子晶體的波傳行為,討論溫度、晶體結構、缺陷與能隙之間的關係。一維聲子晶體由兩種材料週期排列而成,此結構可阻隔某些頻率的彈性波,此外並利用材料特性對溫度的變化差異,探討溫度與聲子能隙的關係,可作為由溫度調變之濾波器。

      在週期結構中,適當地破壞聲子晶體之週期性,製造出缺陷,則能在聲子晶體能隙之中產生缺陷模態( defect mode),在聲子能隙中出現可通過的聲波頻率。將向列型液晶彈性體(nematic elastomers)當成缺陷引入一維聲子晶體結構,討論缺陷厚度對缺陷模態的影響。為了達到主動控制之目的,由於彈性體的硬度比鐵、鋁和形狀記憶合金相較低很多,故在此施以外力改變其缺陷厚度,使其缺陷模態產生變化。另外亦施加電場改變彈性體導軸方向,藉此調變共振模態。藉由上述兩種特性可設計出可調變之共振器。

    Abstract

     In this thesis, we apply the finite elment method (FEM) and transfer matrix method (TMM) in simulating the band structure of the one-dimensional phononic crystals. The relation between acoustic band-gap and the phononic crystals structure, such as thickness ratio and the multiple of the thickness are addressed. The temperature sensitivity of the shape memory alloys (SMA) is analyzed. Therefore, the location and width of the band-gap could be modulated by the changes of the temperature and the material propertied. The above mentioned results enables us to design a acoustic filter modulated by temperature.
     By introducing nematic elastomer defect layers into a periodic structure, we create a defect mode that would let the acoustic wave with specific frequency pass through the periodic structure. Because the elastomers are soft in comparison to metals, such as iron, aluminum and shape memory alloys, the thickness of the elastomers defect layers can be extended by applied external forces simply. The quantity and the location of the defect modes are changed with the additional forces. By making use of the tunable defect mode, we can design a acoustic resonator.

    目錄 摘要 Ⅰ Abstract Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 第一章 緒論 1-1前言 1 1-2文獻回顧 2 1-3本文架構 4 第二章 聲子晶體能隙 2-1 前言 6 2-2 轉換矩陣法 6 2-3 聲子能隙 10 第三章 聲子能隙與溫度的變化 3-1 形狀記憶合金的簡介 22 3-2 聲子能隙與溫度的變化及其應用 23 第四章 含液晶彈性體為缺陷之聲子晶體 4-1 液晶彈性體簡介 32 4-2彈性體連結鍵的影響 34 4-3 數值分析與討論 35 第五章 綜合結論 49 參考文獻 51

    1. E. Yablonovitch, ‘‘Inhibited spontaneous emission in solid-state physics and electronics,’’ Phys. Rev. Lett. 58 , 2059 (1987)
    2. S. Tamura, D. C. Hurley, and J. P. Wolfe, ‘‘Acoustic-phonon propagation in superlattics,’’ Phys. Rev. B 38 ,1427 (1988)
    3. H.L. Stormer, M.A. Chin,A.C. Gossard, and W. Wieg,amm, ‘‘Selective Transmission of High-Frequency Phonons by a Superlattice: The "Dielectric" Phonon Filter,’’ Phys. Rev. Lett. 43, 2012 (1979)
    4. S. Mizuno, and S. Tamura, ‘‘ Impurity levels resonant transmission of acoustic phonons in a double-barrier system,’’ Phys. Rev. B 45, 13423 (1992)
    5. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, ‘‘Acoustic Band Structure of Periodic Elastic Composites,’’ Rev. Lett. 71, 2012 (1993)
    6. M. S. Kushwaha, and P. Halevi, ‘‘Band-gap engineering in periodic elastic composites,’’ Appl. Phys. Lett. 64, 1085 (1994)
    7. A. Leung, ‘‘Dynamic stiffness and substructures, ’’ Berlin : Springer,
    (1993)
    8. J. Doyle, ‘‘ Wave propagation in structure,’’ New York: Springer, (1997)
    9. J. Banerjee, ‘‘Dynamic stiffness formulation for structural elements,’’
    a general approach: Compute structure ; 63(1) :101-2 (1997)
    10. F. R. Montero, E. Jimenez, and M. Torres, ‘‘Ultrasonic Band Gap in a Periodic Two-Dimensional Composite,’’ Phys. Rev. Lett. 80, 1208 (1998)
    11. D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Matinez-Sala, J.V. Sanchez-Perez, F. Meseguer, and J. Llinares, ‘‘High-frequency dynamics of wave localization,’’ Phys. Rev. E 60, R6313-R6315 (1999)
    12. Y. Tanaka, Y. Tomoyasu, and S. Tamura, ‘‘Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,’’ Phys. Rev. B 62, 7387 (2000)
    13. C. Goffaux and J.P. Vigneron, ‘‘Theoretical study of a tunable phononic band gap system,’’ Phys. Rev. B 64, 075118 (2001)
    14. F. Wu, Z. Liu, and Y. Liu, ‘‘Acoustic band gaps created by rotating square rods in a two-dimensional lattice,’’ Phys. Rev. E 66, 046628 (2002)
    15. Z. Liu, C. T. Chan, P. Sheng, and A. Modinos, ‘‘Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,’’ Phys. Rev. B 62, 2446 (2000)
    16. M. Hammouchi, E. H. Boudouti, and A. Nougaoui, ‘‘ Acoustic waves in finite superlattices: Influence of buffer layers,’’ Phys. Rev. B 59, 1999 (1998)
    17. K. Chen, and X. Wang, ‘‘Localized folded acoustic phonon modes in coupled superlattices with structure defects,’’ Phys. Rev. B 61, 12057 (1999)
    18. I. E. Psarobas, N. Stefanou, and A. Modinos, ‘‘Scattering of elastic waves by periodic arrays of spherical bodies,’’ Phys. Rev. B 62, 278 (2000)
    19. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, ‘‘Historical Trends in Lake and Rice Ice Cover in the Northern Hemisphere,’’ Science 289 1734 (2000)
    20. L. Sanchis, A. Hakansson, and J. Sanchez, ‘‘Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air,’’ Phys. Rev. B 67, 035422 (2003)
    21. V. Sanchez, D. Caballerl, R. Matrinez, C. Rubio, J. Sanchez, F. Meseguer, J. Linares, and F. Galvez, ‘‘Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders,’’ Phys. Rev. Lett. 80, 5325 (1998)
    22. C. Goffaux and J. Sanchez-Dehesa, ‘‘Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials,’’ Phys. Rev. B 67, 144301 (2003)
    23. H. Funakubo, ‘‘Shape Memory Alloys, Gordon and Breach,’’ New York.(1987)
    24. M. Ruzzene, and A. Baz, ‘‘Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts,’’ Journal of Vibration and Acoustics, APRIL 122, 151 (2000)
    25. E. B. Priestley, Peter J. Wojtowicz, and P. Sheng, ‘‘Introduction to Liquid Crystals,’’ Plenum Press, New York and Londom, pp.1-4 (1974)
    26. A. Bousfia, E. H. Boudouti, and B. Djafari-Rouhani, ‘‘ Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures,’’ Surface Science 482 1175 (2001)
    27. W. X. Li, K. Q. Chen, W. Duan, J. Wu, and B. L. Gu, ‘‘ Impact of structural defects on the localized acoustic wave in superlattices,’’ Phys. Lett. A 308 285 (2003)
    28. X. Zhang, Z. Liu, Y. Liu, and F. Wu, ‘‘ Defects states in 2D acoustic band-gap materials with bend-shaped linear defects,’’ Solid State Communications 130 67 (2004)
    29. G. Wang, D. Yu, J. Wen, Y. Liu, and X. Wen, ‘‘ One-dimension phononic crystals with locally resonant structures,’’ Phys. Lett. A 327, 512 (2004)
    30. E. M. Terentjev, ‘‘Liquid-crystalline elastomers,’’ J. Phys.:Condens. Matter 11 R239-R257 (1999)
    31. W. Warner and E. M. Terentjev, ‘‘Liquid Crystal Elastomers,’’ Clarendon Oxford ( 2003)
    32. S. M. Clarke, A. R. Tajbakhsh, E. M. Terentjev, C. Remillat, G. R. Tomlinson, and J. R. House, ‘‘Soft elasticity and mechanical damping in liquid crystalline elastomers,’’ J. Appl. Phys. 89, 6530 (2001)
    33. S. M. Clarke, A. Hotta, A. R. Tajbakhsh, and E. M. Terentjev, ‘‘Effect of crosslinker geometry on equilibrium thermal and mechanical properties of nematic elastomers,’’ Phys. Rev. E 64, 061702 (2001)
    34. S. M. Clarke, A. Hotta, A. R. Tajbakhsh, and E. M. Terentjev, ‘‘ Effect of cross-linker geometry on dynamic mechanical properties of nematic elastomers,’’ Phys. Rev. E 65, 021804 (2002)
    35. E. M. Terentjev and M. Warner, ‘‘Dynamics of soft and semisoft nematic elastomers,’’ Phys. Rev. E 60, 603 (1999)
    36. A. Hotta and E. M. Terentjev, ‘‘Dynamic soft elasticity in monodomain nematic elastomers,’’ Eur. Phys. J. E. 10, 291 (2003)
    37. E. M. Terentjev, I. V. Kamotski, D. D. Zakharov, and L. J. Fradkin ,
    ‘‘Propagation of acoustic waves in nematic elastomers,’’ Phys. Rev. E 66, 052701 (2002)
    38. S. M. Clark, A.R. Tajbakhsh, E. M. Terentjev, and M. Warner, ‘‘Anomalous Viscoelastic Response of Nematic Elastomers,’’ Phys. Rev. Lett. 86, 4044 (2001)
    39. G. R. Mitchell, F. Davis, and W. Guo, ‘‘Strain-induced transitions in liquid-crystal elastomers,’’ Phys. Rev. Lett. 71, 2947 (1993)
    40. S. M. Clarke and E. M. Terentjev, ‘‘Slow Stress Relaxation in Randomly Disordered Nematic Elastomers and Gels,’’ Phys. Rev. Lett. 81, 4436 (1998)
    41. L. J. Fradkin, ‘‘Low-frequency acoustic waves in nematic elastomers,’’ Proc. R. Soc. Lond. A 459, 2627 (2003)

    下載圖示 校內:2007-01-24公開
    校外:2007-01-24公開
    QR CODE