| 研究生: |
林士哲 Lin, Shih-Jer |
|---|---|
| 論文名稱: |
熱機處理對鈦-鉬合金機械性質的影響 Effect of thermomechanical treatment on mechanical properties of Ti-Mo alloys |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鈦 、熱機處理 、鉬 |
| 外文關鍵詞: | thermomechanical treatmen, molybdenum, titanium |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中,對經過室溫滾壓的Ti-15Mo-1Bi之合金進行不同熱處理,以控制彈性模數為主要目的,以ST(900,5m)A(400,24h)能夠得到最高的彈性模數有100GPa。在條件ST(900,5m)能夠有最低的彈性模數有75GPa。在彈性模數最高與最低的差距為25GPa,能夠得到差距變化為最低彈性模數的33%。
對於Ti-7.5Mo合金進行不同熱機處理,藉以探討其對機械性質的影響。時效溫度在500℃時,強度最高,但延性最低,而時效溫度在600℃的條件兼具強度與延伸率。直接鑄造的彈性模數是最低的條件,有60GPa,並且在時效溫度500℃時,彈性模數有最高值92GPa,有;熱滾壓後空冷再去固溶900℃5分鐘後時效500℃8小時這個條件,彈性模數同樣有最高值。在彈性模數的控制上就有最高彈性模數93GPa與最低彈性模數60GPa,此差距為33GPa,能夠得到差距變化為最低彈性模數的50%。
In this study, for the rolled Ti-15Mo-1Bi at room temperature was given in different thermal treatments. The control of elastic modulus is the main purpose. The condition of solute treatment at 900℃ for 5 minutes and then aging treatment at 400℃ for 24 hours possesses the highest elastic modulus value which is 100 GPa. The condition of solute treatment at 900℃ for 5 minutes has the lowest elastic modulus value which is 75 GPa. The biggest difference of elastic modulus is from these two conditions of thermal treatment which is 25GPa.
The second part of the experiment is an observation of the effects of different thermalmechanical treatments for Ti-7.5Mo. The condition of aging treatment at 500℃possesses the best strength but the worst ductility. The condition of aging treatment at 600℃ possesses good strength and ductility. The condition of cast possesses the lowest elastic modulus value which is 60 GPa. The condition of aging treatment at 500℃ for 8 hours possesses the highest elastic modulus value which is 92 GPa. And the condition that given hot rolling then solute treatment at 900℃ for 5minutes and aging treatment at 500℃ for 8 hours possesses the same value. The difference of the values between these two conditions of thermalmechnaical treatment is 30GPa.
Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
Blackburn MJ and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metall Soc AIME, 242:2461-9, 1968.
Cheal E, Spector M, Hayes W. “Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty”, J Orthop Res ; 10:405-422.1992.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annal Intermalionel Biomaterial Symposium, April 20-24, 1974.
Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979.
Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.
Fedotov SG. “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.
Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.
Hansson S. “A conical implant–abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone”, Clin Implant Dent Relat Res , 2(1):33-41.2000.
Ho WF, Ju CP and Chern lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.
Ho WF, Ju CP, Chern Lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20, 2115-22, 1999.
Koeneman JB, Hansen TM, Toal TR. “Effects of implant geometry position and boundary conditions on cancellous bone stresses: a finite element analysis”, Proceedings of Biomechanics Symposium, 120:117-120, 1991.
Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. “The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component”, J Bone Jt Surg, 66A:280-286, 1984.
Metal Park, Titanium atechnical guide, ASM International, Oh44073., P.14, 1998.
Molchanova EK, ”phase diagrams of titanium alloys”[transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem,1965.
Trenogina, T.L,Lerinaman,R.M., “Decomposition of the Martensite in Two-Phase Titanium Alloys”, in Titanium and Titanium Alloys, Scientific and Technological Aspects(Proc. Thrid Int. Conf. on Titanium, Moscow),Plenum Press, P.1623-1632, 1982.
Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.
Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.
Zhou Y.L., Niinomi M., Akahori T., “Decomposition of matensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.
林家緯, “鑄造鈦-鉬合金疲勞性質研究”, 成功大學材料工程研究所博士論文, 2005.
林殿傑,”鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究”, 成功大學材料工程研究所博士論文, 2002.
林群堡, “熱處理對鈦-鉬合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2006.
蔡天成,”鉍的添加對Ti-15Mo合金性質的影響”, 成功大學材料工程研究所碩士論文, 2007.
賴耿陽, “金屬鈦理論與應用”, 復漢出版社, 1990.
簡嘉毅,”鈦-鉬合金熱處理後拉伸疲勞性質研究”,成功大學材料工程研究所碩士論文, 2005.
蘇子傑,”添加鋁對鈦-鉬合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2006.
校內:2108-07-29公開