簡易檢索 / 詳目顯示

研究生: 鐘婉菱
Zhong, Wan-Ling
論文名稱: 具全方向自適應能力之壓電–電磁混合獵能器運動行為與獵能效率研究
Study of Dynamic Behavior and Energy Harvesting Efficiency of a Piezoelectric-Electromagnetic Hybrid Energy Harvester with Omnidirectional Self-Adaptive Capability
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 133
中文關鍵詞: 全方向自適應振動系統混合式獵能器壓電能量轉換電磁感應自供電系統頻域補償
外文關鍵詞: Hybrid energy harvesting, Dual-degree-of-freedom system, Omnidirectional self-adaptation, Piezoelectric–electromagnetic coupling, Broadband vibration
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於開發一種具備全方向自適應能力之混合式振動獵能系統(Omnidirectional Self-Adaptive Hybrid Energy Harvester, OSAHEH),以提升其於多方向激振環境下之動態適應性與獵能效率。該系統構型採用對稱式端質量懸臂樑結構,並建構系統之旋轉自由度,使其能主動調整與激振方向之相對夾角。為強化能量轉換效率,系統集成壓電與電磁雙重能量轉換元件,以達成頻域互補與混合獵能輸出之效果。
    動力學建模方面,本研究依據拉格朗日力學原理,選取懸臂樑偏轉角 θ 與末端位移 w 作為主要廣義坐標,並考慮系統之轉動慣量、樑體撓曲、質量交互耦合與激振邊界條件,建立具機構自適應特性之系統動力學模型。為反映系統於實際運動過程中之能量耗損,推導庫倫摩擦模型,藉以模擬軸承摩擦力對振動產生器之旋轉動能消耗;電磁模組則根據法拉第電磁感應定律,結合磁通變化率與感應線圈之幾何佈局推導其感應電壓表現。上述模型提供預測整體系統於多種激振條件下之運動行為與混合能量響應基礎。
    製作原型裝置並導入PVDF壓電模組與多組磁鐵–線圈構成之感應模組,於振動平台上進行多角度激振試驗。旋轉角度透過高速攝影機與MATLAB進行影像處理,並與同步取得之壓電與電磁電壓訊號進行對照分析。經由實驗分析,系統表現可分為四種典型運動模式:穩態自適應、單向旋轉、週期性擺動與非對齊穩態。各模式顯示裝置於不同初始與激振條件下之運動特性與最終穩態表現。並於數學模型之模擬成功重現對應之運動模式。
    在13.5 Hz共振頻率條件下,實驗所得穩態位移約為73 mm,對應壓電電壓為0.85 V,由於混合能量轉換特性具有頻域互補能力,即使於頻率變動條件下仍可維持穩定能量輸出,提升整體系統之頻寬適應性與實用性。
    整體而言,本研究成功構建一套具全方向自適應機制與混合獵能效果之系統,具備優異之自適應穩態能力與非共振條件下之能量補償特性。本系統對未來應用於微型交通之自供電裝置與非穩定振動環境中之能源獲取具有高度應用潛力。

    This study presents a dual-degree-of-freedom hybrid energy harvester integrating piezoelectric and electromagnetic mechanisms with omnidirectional self-adaptive capability. The system employs a cantilever beam with symmetric end masses and rotational freedom, enabling automatic alignment with excitation directions. A dynamic model was derived through the energy method and solved numerically, considering Coulomb friction and electromagnetic effects. Experimental validation was performed using high-speed imaging, with frame sequences processed in MATLAB by custom image-analysis algorithms to extract motion trajectories and angular responses. Results confirm broadband harvesting with complementary outputs extending the effective frequency range. The model reproduced observed motion behaviors and frequency regimes, accurately predicting electromagnetic voltage, while piezoelectric responses were slightly overestimated due to linear beam assumptions.

    摘要 I 誌謝 XV 目錄 XVI 圖目錄 XIX 表目錄 XXIII 第1章 緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 1 第2章 自適應調節機構設計與工作原理 5 2.1 自適應獵能器機構設計理念 5 2.2 初期機構設計與原型開發 6 2.2.1 第一版 - 雙側軸承固定結構設計 7 2.2.2 第二版 - 單側軸承懸臂設計 9 2.2.3 最終版 - 懸臂式自適應結構之最終設計構型 10 2.2.4 自適應系統結構配置與工作原理 12 2.3 自適應獵能器組成元件之參數量測與選型依據 14 2.3.1 懸臂樑材料與構件選型說明 15 2.3.2 壓電片材料與規格 16 2.3.3 磁鐵幾何與磁場特性量測 17 第3章 系統數學模型 19 3.1 系統座標與運動自由度定義 19 3.2 軸承摩擦力 21 3.3 系統動力學模型 24 第4章 電磁感應發電機制之理論模型 29 4.1 系統架構與參數定義 29 4.2 磁通量變化與感應電動勢推導 30 4.3 基於角速度之感應電壓輸出模擬 34 4.4 磁極排列與感應效率關係分析 35 第5章 懸臂樑結構參數設計及實驗驗證 38 5.1 構型設計與實驗規劃 38 5.1.1 實驗材料與試件配置 38 5.1.2 實驗平台建構與量測方法 39 5.1.3 不同激振角度下之振幅穩定性驗證結果 40 5.1.4 懸臂樑頻率響應特性之掃頻實驗 43 5.2 各角度響應結果分析與最佳構型尺寸選擇 44 5.3 阻抗匹配實驗 45 5.3.1 壓電模組之最佳負載阻抗測試 45 5.3.2 電磁模組之最佳負載阻抗測試 47 5.4 懸臂樑參數量測 48 5.4.1 PVDF壓電材料之參數量測 50 5.4.2 基於對數衰減響應之懸臂樑結構阻尼計算 52 第6章 全方向自適應振動實驗與動態分析 55 6.1 對稱質量結構下自適應系統之動態行為探討 55 6.1.1 穩態自適應(Steady-State Self-Adaptation) 55 6.1.2 週期性擺動(Periodic swing) 57 6.1.3 單向旋轉(Unidirectional rotation) 60 6.1.4 非對齊穩態(Non-Aligned Steady State) 62 6.2 固定激振角度下之自適應行為 65 6.2.1 激振條件與量測方法 65 6.2.2 基於高速攝影影像之固定旋轉角度自動追蹤方法 66 6.2.3 電壓響應與懸臂樑偏轉角度收斂分析 69 6.3 連續旋轉激振下之自適應行為 75 6.3.1 基於高速攝影影像之連續旋轉角度自動追蹤方法 76 6.3.2 電壓響應與懸臂樑偏轉角度收斂分析 81 6.3.3 不同激振振幅對系統偏轉行為與電壓輸出響應之影響 85 第7章 實驗結果與討論 88 7.1 壓電模型與實驗數據比較 88 7.1.1 運動行為探討與相圖分析 88 7.1.2 懸臂樑末端位移與壓電輸出響應 95 7.2 電磁模型與實驗數據比較 98 第8章 結論與未來展望 102 References 104

    [1] Micromobility Global Business Report 2024, “Market to Reach $9.4 Billion by 2030 Driven by Electric Scooters and E-Bikes,” GlobeNewswire, Apr. 2024.
    [2] Yin, P., Tang, L., Li, Z., Xia, C., Li, Z., & Aw, K. C. (2025). Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter-rotations. Applied Energy, 377, 124507.
    [3] Miao, G., Fang, S., Wang, S., & Zhou, S. (2022). A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism. Applied Energy, 305, 117838.
    [4] Luo, A., Zhang, Y., Dai, X., Wang, Y., Xu, W., Lu, Y., ... & Wang, F. (2020). An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 279, 115762.
    [5] Toyabur, R. M., Salauddin, M., & Park, J. Y. (2017). Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Ceramics International, 43, S675-S681.
    [6] Toyabur, R. M., Salauddin, M., Cho, H., & Park, J. Y. (2018). A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy conversion and management, 168, 454-466.
    [7] Zhou, S., Cao, J., Inman, D. J., Lin, J., Liu, S., & Wang, Z. (2014). Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 133, 33-39.
    [8] Wang, X., Chen, C., Wang, N., San, H., Yu, Y., Halvorsen, E., & Chen, X. (2017). A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques. Applied energy, 190, 368-375.
    [9] Singh, K. B., Bedekar, V., Taheri, S., & Priya, S. (2012). Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires. Mechatronics, 22(7), 970-988.
    [10] Shi, G., Xia, Y., Yang, Y., Chen, J., Peng, Y., Xia, H., ... & Qian, L. (2020). A sensorless self-tuning resonance system for piezoelectric broadband vibration energy harvesting. IEEE Transactions on Industrial Electronics, 68(3), 2225-2235.
    [11] Lan, C., Chen, Z., Hu, G., Liao, Y., & Qin, W. (2021). Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam. Mechanical Systems and Signal Processing, 156, 107672.
    [12] Qin, H., Mo, S., Jiang, X., Shang, S., Wang, P., & Liu, Y. (2022). Multimodal multidirectional piezoelectric vibration energy harvester by U-shaped structure with cross-connected beams. Micromachines, 13(3), 396.
    [13] Chen, R., Ren, L., Xia, H., Yuan, X., & Liu, X. (2015). Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester. Sensors and Actuators A: Physical, 230, 1-8.
    [14] Shi, G., Sun, Q., Xia, Y., Jia, S., Pan, J., Li, Q., ... & Sun, Y. (2024). An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures. Energy, 305, 132307.
    [15] Wu, S., Kan, J., Wu, W., Lin, S., Yu, Y., Liao, W., & Zhang, Z. (2024). A tunable pendulum-like piezoelectric energy harvester for multidirectional vibration. Sustainable Materials and Technologies, 41, e01094.
    [16] Sun, R., Ma, H., Zhou, S., Li, Z., & Cheng, L. (2024). A direction-adaptive ultra-low frequency energy harvester with an aligning turntable. Energy, 311, 133273.
    [17] Han, M., Yang, X., Wang, D. F., Jiang, L., Song, W., & Ono, T. (2022). A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations. Applied Energy, 315, 119040.
    [18] Zhao, H., Wei, X., Zhong, Y., & Wang, P. (2019). A direction self-tuning two-dimensional piezoelectric vibration energy harvester. Sensors, 20(1), 77.
    [19] Wang, Z., Du, Y., Li, T., Yan, Z., & Tan, T. (2022). Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization. Energy Conversion and Management, 261, 115638.
    [20] Qiu, J., Wen, Y., Li, P., Liu, X., Chen, H., & Yang, J. (2015). A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems. Journal of Applied Physics, 117(17).
    [21] Chen, N., Jung, H. J., Jabbar, H., Sung, T. H., & Wei, T. (2017). A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sensors and Actuators A: Physical, 254, 134-144.
    [22] Fan, K., Chang, J., Pedrycz, W., Liu, Z., & Zhu, Y. (2015). A nonlinear piezoelectric energy harvester for various mechanical motions. Applied Physics Letters, 106(22).
    [23] Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135, 32-37.
    [24] Peng, L., Wang, Y., Qi, Y., Ru, X., & Hu, X. (2023). A hybrid piezoelectric-electromagnetic energy harvester used for harvesting and detecting on the road. Journal of Cleaner Production, 426, 139052.
    [25] Li, L., Li, J., Luo, D., Zhang, Z., Zeng, K., & Chen, S. (2024). A piezo-electromagnetic hybrid multi-directional vibration energy harvester in freight trains. Sustainable Materials and Technologies, 41, e00989.
    [26] He, L., Han, Y., Sun, L., Wang, H., Zhang, Z., & Cheng, G. (2023). A rotating piezoelectric-electromagnetic hybrid harvester for water flow energy. Energy Conversion and Management, 290, 117221.
    [27] Zhou, J., He, L., Liu, L., Yu, G., Gu, X., & Cheng, G. (2022). Design and research of hybrid piezoelectric-electromagnetic energy harvester based on magnetic couple suction-repulsion motion and centrifugal action. Energy Conversion and Management, 258, 115504.
    [28] Wang, Z., Chen, Y., Jiang, R., Du, Y., Shi, S., Zhang, S., ... & Tan, T. (2023). Broadband omnidirectional piezoelectric–electromagnetic hybrid energy harvester for self-charged environmental and biometric sensing from human motion. Nano Energy, 113, 108526.
    [29] Larkin, M., & Tadesse, Y. (2013). HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions. International Journal of Smart and Nano Materials, 4(4), 257-285.
    [30] Upadrashta, D., & Yang, Y. (2016). Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sensors and Actuators A: Physical, 244, 223-232.
    [31] Shin, Y. H., Jung, I., Park, H., Pyeon, J. J., Son, J. G., Koo, C. M., ... & Kang, C. Y. (2018). Mechanical fatigue resistance of piezoelectric PVDF polymers. Micromachines, 9(10), 503.
    [32] Wang, Y. J., Chen, C. D., & Sung, C. K. (2012). System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel. IEEE/ASME Transactions on Mechatronics, 18(2), 754-763.
    [33] Chen, Y.-H., & Chen, C.-D. (n.d.). The development of C⁰ and C¹ finite element formulations based on Higher-order refined zigzag theory (HRZT) for the linear and nonlinear static analysis of sandwich composite beams. 國立成功大學 機械工程學系 碩士論文.

    無法下載圖示 校內:立即公開
    校外:2030-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE