| 研究生: |
鐘婉菱 Zhong, Wan-Ling |
|---|---|
| 論文名稱: |
具全方向自適應能力之壓電–電磁混合獵能器運動行為與獵能效率研究 Study of Dynamic Behavior and Energy Harvesting Efficiency of a Piezoelectric-Electromagnetic Hybrid Energy Harvester with Omnidirectional Self-Adaptive Capability |
| 指導教授: |
陳重德
Chen, Chung-De |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 全方向自適應振動系統 、混合式獵能器 、壓電能量轉換 、電磁感應 、自供電系統 、頻域補償 |
| 外文關鍵詞: | Hybrid energy harvesting, Dual-degree-of-freedom system, Omnidirectional self-adaptation, Piezoelectric–electromagnetic coupling, Broadband vibration |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於開發一種具備全方向自適應能力之混合式振動獵能系統(Omnidirectional Self-Adaptive Hybrid Energy Harvester, OSAHEH),以提升其於多方向激振環境下之動態適應性與獵能效率。該系統構型採用對稱式端質量懸臂樑結構,並建構系統之旋轉自由度,使其能主動調整與激振方向之相對夾角。為強化能量轉換效率,系統集成壓電與電磁雙重能量轉換元件,以達成頻域互補與混合獵能輸出之效果。
動力學建模方面,本研究依據拉格朗日力學原理,選取懸臂樑偏轉角 θ 與末端位移 w 作為主要廣義坐標,並考慮系統之轉動慣量、樑體撓曲、質量交互耦合與激振邊界條件,建立具機構自適應特性之系統動力學模型。為反映系統於實際運動過程中之能量耗損,推導庫倫摩擦模型,藉以模擬軸承摩擦力對振動產生器之旋轉動能消耗;電磁模組則根據法拉第電磁感應定律,結合磁通變化率與感應線圈之幾何佈局推導其感應電壓表現。上述模型提供預測整體系統於多種激振條件下之運動行為與混合能量響應基礎。
製作原型裝置並導入PVDF壓電模組與多組磁鐵–線圈構成之感應模組,於振動平台上進行多角度激振試驗。旋轉角度透過高速攝影機與MATLAB進行影像處理,並與同步取得之壓電與電磁電壓訊號進行對照分析。經由實驗分析,系統表現可分為四種典型運動模式:穩態自適應、單向旋轉、週期性擺動與非對齊穩態。各模式顯示裝置於不同初始與激振條件下之運動特性與最終穩態表現。並於數學模型之模擬成功重現對應之運動模式。
在13.5 Hz共振頻率條件下,實驗所得穩態位移約為73 mm,對應壓電電壓為0.85 V,由於混合能量轉換特性具有頻域互補能力,即使於頻率變動條件下仍可維持穩定能量輸出,提升整體系統之頻寬適應性與實用性。
整體而言,本研究成功構建一套具全方向自適應機制與混合獵能效果之系統,具備優異之自適應穩態能力與非共振條件下之能量補償特性。本系統對未來應用於微型交通之自供電裝置與非穩定振動環境中之能源獲取具有高度應用潛力。
This study presents a dual-degree-of-freedom hybrid energy harvester integrating piezoelectric and electromagnetic mechanisms with omnidirectional self-adaptive capability. The system employs a cantilever beam with symmetric end masses and rotational freedom, enabling automatic alignment with excitation directions. A dynamic model was derived through the energy method and solved numerically, considering Coulomb friction and electromagnetic effects. Experimental validation was performed using high-speed imaging, with frame sequences processed in MATLAB by custom image-analysis algorithms to extract motion trajectories and angular responses. Results confirm broadband harvesting with complementary outputs extending the effective frequency range. The model reproduced observed motion behaviors and frequency regimes, accurately predicting electromagnetic voltage, while piezoelectric responses were slightly overestimated due to linear beam assumptions.
[1] Micromobility Global Business Report 2024, “Market to Reach $9.4 Billion by 2030 Driven by Electric Scooters and E-Bikes,” GlobeNewswire, Apr. 2024.
[2] Yin, P., Tang, L., Li, Z., Xia, C., Li, Z., & Aw, K. C. (2025). Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter-rotations. Applied Energy, 377, 124507.
[3] Miao, G., Fang, S., Wang, S., & Zhou, S. (2022). A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism. Applied Energy, 305, 117838.
[4] Luo, A., Zhang, Y., Dai, X., Wang, Y., Xu, W., Lu, Y., ... & Wang, F. (2020). An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 279, 115762.
[5] Toyabur, R. M., Salauddin, M., & Park, J. Y. (2017). Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Ceramics International, 43, S675-S681.
[6] Toyabur, R. M., Salauddin, M., Cho, H., & Park, J. Y. (2018). A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy conversion and management, 168, 454-466.
[7] Zhou, S., Cao, J., Inman, D. J., Lin, J., Liu, S., & Wang, Z. (2014). Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 133, 33-39.
[8] Wang, X., Chen, C., Wang, N., San, H., Yu, Y., Halvorsen, E., & Chen, X. (2017). A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques. Applied energy, 190, 368-375.
[9] Singh, K. B., Bedekar, V., Taheri, S., & Priya, S. (2012). Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires. Mechatronics, 22(7), 970-988.
[10] Shi, G., Xia, Y., Yang, Y., Chen, J., Peng, Y., Xia, H., ... & Qian, L. (2020). A sensorless self-tuning resonance system for piezoelectric broadband vibration energy harvesting. IEEE Transactions on Industrial Electronics, 68(3), 2225-2235.
[11] Lan, C., Chen, Z., Hu, G., Liao, Y., & Qin, W. (2021). Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam. Mechanical Systems and Signal Processing, 156, 107672.
[12] Qin, H., Mo, S., Jiang, X., Shang, S., Wang, P., & Liu, Y. (2022). Multimodal multidirectional piezoelectric vibration energy harvester by U-shaped structure with cross-connected beams. Micromachines, 13(3), 396.
[13] Chen, R., Ren, L., Xia, H., Yuan, X., & Liu, X. (2015). Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester. Sensors and Actuators A: Physical, 230, 1-8.
[14] Shi, G., Sun, Q., Xia, Y., Jia, S., Pan, J., Li, Q., ... & Sun, Y. (2024). An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures. Energy, 305, 132307.
[15] Wu, S., Kan, J., Wu, W., Lin, S., Yu, Y., Liao, W., & Zhang, Z. (2024). A tunable pendulum-like piezoelectric energy harvester for multidirectional vibration. Sustainable Materials and Technologies, 41, e01094.
[16] Sun, R., Ma, H., Zhou, S., Li, Z., & Cheng, L. (2024). A direction-adaptive ultra-low frequency energy harvester with an aligning turntable. Energy, 311, 133273.
[17] Han, M., Yang, X., Wang, D. F., Jiang, L., Song, W., & Ono, T. (2022). A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations. Applied Energy, 315, 119040.
[18] Zhao, H., Wei, X., Zhong, Y., & Wang, P. (2019). A direction self-tuning two-dimensional piezoelectric vibration energy harvester. Sensors, 20(1), 77.
[19] Wang, Z., Du, Y., Li, T., Yan, Z., & Tan, T. (2022). Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization. Energy Conversion and Management, 261, 115638.
[20] Qiu, J., Wen, Y., Li, P., Liu, X., Chen, H., & Yang, J. (2015). A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems. Journal of Applied Physics, 117(17).
[21] Chen, N., Jung, H. J., Jabbar, H., Sung, T. H., & Wei, T. (2017). A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sensors and Actuators A: Physical, 254, 134-144.
[22] Fan, K., Chang, J., Pedrycz, W., Liu, Z., & Zhu, Y. (2015). A nonlinear piezoelectric energy harvester for various mechanical motions. Applied Physics Letters, 106(22).
[23] Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135, 32-37.
[24] Peng, L., Wang, Y., Qi, Y., Ru, X., & Hu, X. (2023). A hybrid piezoelectric-electromagnetic energy harvester used for harvesting and detecting on the road. Journal of Cleaner Production, 426, 139052.
[25] Li, L., Li, J., Luo, D., Zhang, Z., Zeng, K., & Chen, S. (2024). A piezo-electromagnetic hybrid multi-directional vibration energy harvester in freight trains. Sustainable Materials and Technologies, 41, e00989.
[26] He, L., Han, Y., Sun, L., Wang, H., Zhang, Z., & Cheng, G. (2023). A rotating piezoelectric-electromagnetic hybrid harvester for water flow energy. Energy Conversion and Management, 290, 117221.
[27] Zhou, J., He, L., Liu, L., Yu, G., Gu, X., & Cheng, G. (2022). Design and research of hybrid piezoelectric-electromagnetic energy harvester based on magnetic couple suction-repulsion motion and centrifugal action. Energy Conversion and Management, 258, 115504.
[28] Wang, Z., Chen, Y., Jiang, R., Du, Y., Shi, S., Zhang, S., ... & Tan, T. (2023). Broadband omnidirectional piezoelectric–electromagnetic hybrid energy harvester for self-charged environmental and biometric sensing from human motion. Nano Energy, 113, 108526.
[29] Larkin, M., & Tadesse, Y. (2013). HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions. International Journal of Smart and Nano Materials, 4(4), 257-285.
[30] Upadrashta, D., & Yang, Y. (2016). Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sensors and Actuators A: Physical, 244, 223-232.
[31] Shin, Y. H., Jung, I., Park, H., Pyeon, J. J., Son, J. G., Koo, C. M., ... & Kang, C. Y. (2018). Mechanical fatigue resistance of piezoelectric PVDF polymers. Micromachines, 9(10), 503.
[32] Wang, Y. J., Chen, C. D., & Sung, C. K. (2012). System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel. IEEE/ASME Transactions on Mechatronics, 18(2), 754-763.
[33] Chen, Y.-H., & Chen, C.-D. (n.d.). The development of C⁰ and C¹ finite element formulations based on Higher-order refined zigzag theory (HRZT) for the linear and nonlinear static analysis of sandwich composite beams. 國立成功大學 機械工程學系 碩士論文.
校內:立即公開