| 研究生: |
王尊儒 Wang, Tsun-ju |
|---|---|
| 論文名稱: |
化學共沉法製備鋰鋁鐵(鉬,釩,鉬釩,鉬錳)氧化物及其性質研究 Synthesis and Properties of LiAlFe(Mo, V, MoV, MoMn)Combined Oxides by Chemical Coprecipitation |
| 指導教授: |
高振豐
Kao, Chen-feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 化學共沉法 、介電常數 |
| 外文關鍵詞: | chemical coprecipitation, dielectric constant |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以化學共沉法製備不同比例的鋰鋁鐵、鋰鋁鉬、鋰鋁釩、鋰鋁鉬釩和鋰鋁鉬錳氧化物陶瓷粉末,此乃由於化學共沉法具有高均勻性、高反應性、高品質及精確的化學計量比。並對合成出來的粉末做一連串的性質分析及電、磁性質測試。
以化學共沉法製得之前導物粉末先由TGA判斷其在空氣下加熱,使粉末完全反應成氧化物的溫度(預期之煆燒溫度)。再用XRD分析前導物於不同溫度下煆燒6小時之粉末晶相種類及成長情況,FTIR圖譜觀察煆燒粉末之氫氧及多餘的有機物反應程度及陶瓷粉末,來決定最佳煆燒溫度條件。
煆燒後粉末以雷射粒徑分析儀測量粉體粒徑分佈情形,可知以化學共沉法製備之氧化物粉末平均粒徑約為0.41 ~ 0.63μm;以SEM觀察粉體外觀;以EDS分析粉體內各元素所佔之比例,符合配製粉體時的化學計量。
將煆燒後的氧化物粉末作為鋰離子二次電池之陰極材料,經過充放電測試比較後,可知五種氧化物中,鋰鋁鐵氧化物有著相對較高的電容量,但其工作電壓也相對較低,約為2.8~2.9V;鋰鋁鉬錳氧化物的工作電壓最高,約為4.0V。
煆燒後粉末再經由高於煆燒溫度300 ~ 500℃之溫度下燒結8小時。以LCR測量儀測量各燒結體之交流電阻及電容值經公式換算成介電常數,可知燒結溫度愈高電阻愈大、介電常數愈小;鋁含量愈多介電常數也愈小;並且含鉬的氧化物介電常數最大,約可到100,再來依序是釩、鐵,錳最小。不過整體來看LiAlXM1-XO2都屬於低介電材料。
利用SQUID測量在外加磁場的環境下,各燒結體之磁化強度隨溫度之變化情形判斷出鋰鋁鐵、鋰鋁鉬、鋰鋁釩、鋰鋁鉬釩和鋰鋁鉬錳氧化物燒結體,受外加磁場影響皆呈現正磁化率,隨溫度升高而產生消磁現象,屬於順磁性行為;並且當燒結溫度提高,產生之磁化率愈大。唯鋰鋁鉬錳氧化物在1300℃下燒結後,其燒結體顯示為反鐵磁性。
This study is to synthesize the powders of various stoichiometric ratios of lithium-aluminum-iron(molybdenum/ vanadium/ manganese) oxides by chemical coprecipitation. Because chemical coprecipitation has high homogeneity, high quality and exact stoichiometry. The characterization and electrical properties of the above compounds were investigated.
First, the precursors which were synthesized by chemical coprecipitation were analyzed with TGA. That the precursors were transferred to complex oxides compounds to know the probable temperature. Then XRD and FTIR were used to check the crystal type and undesired organic compoumds of precursors which calcined at various temperatures for 6 hours. Therefore, one could choose the best temperature for calcination.
The particle size distribution of the calcined products were measured at about 0.41 ~ 0.63 μm. SEM could be used to see the surface appearance of powders. EDS were used to know the stoichiometric ratios exactly.
The electrochemical experiments with the calcined products as a cathode of lithium batteriy were run. The results show that LiAl1/3Fe2/3O2 has relative higher electric capacity, but lower working potential at about 2.8V. LiAl1/3Mo1/3Mn1/3O2 has relative higher working potential at about 4.0V.
The calcined products were sintered at the temperature 300 to 500 degree of centrifuge higher than calcination temperature for 8 hours. LCR meter was used to measure the electrical capacitance of the samples. Dielectric constants were calculated from the electrical capacity through the formula. The dielectric constants of those materials are low, which decreases with increasing the sintering temperature, the measuring frequencies and the amounts of aluminum content.
From the SQUID experiment, one could obtain the magnetic property of all sinter bodies showing the paramagnetism. Only LiAlXMoYMn1-X-YO2 sintered at 1300℃ shows the antiferromagnetism.
【1】汪建民 博士;精密陶瓷之特性及發展;精密陶瓷科技,工業技
術研究院出版;p. 1-27。
【2】林振華、林振富 編譯;“充電式鋰離子電池-材料與應用”;
全華科技圖書股份有限公司發行。
【3】周更生 教授;“貳、氣相及液相法製備精密陶瓷粉體”;精密
陶瓷科技(I);p. 2-1 ~ 2-12。
【4】陳三元 先生;“参、固相法製備精密陶瓷粉體”;精密陶瓷科
技(I);p. 3-1 ~ 3-33。
【5】Chi Bo, Jian-Bao Li, Yong-Sheng Han; “Effect of
precipitant on preparation of Ni-Co spinel oxide by
coprecipitation method”; Materials Letters, 58, 1415-
1418, 2004.
【6】Y. K. Sun, D. W. Kim, Y. M. Choi; “Synthesis and
characterization of spinel LiMn2-xNixO4 for
lithium/polymer battery applications”; J. Power
Sources, 79, 231, 1999.
【7】Julien C., Ziolkiewicz S., Lemal M.; “Synthesis,
Structure and Electrochemistry of LiMn2-yAlyO4
Prepared by a Wet-Chemistry Method”; J. Mater. Chem.,
11, 1837-1842, 2001.
【8】Hwang B. J., Santhanam R., Liu D. G..; “Effect of Al-
Substitution on the Stability of LiMn2O4 Spinel,
Synthesized by Citric Acid Sol-Gel Method”; Journal
of Power Sources, 102, 326-331, 2001.
【9】Masao Ohashi, “Preparation of layer structured
titanate CsXTi2-XFeXO4 (X=0.7) and application as
cathode material in rechargeable lithium battery”,
Solid State Ionics, 172, 31-32, 2004.
【10】Jong-Ho Choi, Heai-Ku Park, “CuXFeYV2O5 xerogel
cathodes for lithium secondary batteries”,
Electrochimica Acta 50, 405-409, 2004.
【11】C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy,
“New Cathode Materials for Rechargeable Lithium
Batteries: The 3-D Framework Structures Li3Fe2(XO4)3
(X=P, As)”, Journal of Solid State Chemistry, 135,
228-234, 1998.
【12】Mineo Sato, Shigehisa Tajimi, Hirokazu Okawa,
“Preparation of iron phosphate cathode material of
Li3Fe2(PO4)3 by hydrothermal reaction and thermal
decomposition processes” Solid State Ionics, 152,
247-251, 2002.
【13】C. H. Mi, X. G. Zhang, X. B. Zhao, “Synthesis and
performance of LiMn0.6Fe0.4PO4 / nano-carbon webs
composite cathode” Materials Science and Engineering
B, 129, 8-13, 2006.
【14】J. Yao, S. Bewlay, K. Konstantionv,
“Characterisation of olivine-type LiMnXFe1-XPO4
cathode materials”, Journal of Alloys and Compounds,
425, 362-366, 2006.
【15】Sai Wang, Weihua Qiu, Yunlong Guan, “Electrochemical
characteristics of LiMXFe1-XPO4 cathode with LiBOB
based electrolytes”, Electrochimica Acta, 52, 4970-
4910, 2007.
【16】Stuart Licht, Baohui Wang, Susanta Ghoush; “Enhanced
Fe(VI) cathode conductance and charge transfer:
effects on the super-iron battery”; Electrochemistry
Communications, 2, 535-540, 2000.
【17】Maxim Koltypin, Stuart Licht, Ran Tel Vered; “The
study of K2FeO4 (Fe6+-super iron compound) as a
cathode material for rechargeable lithium
batteries”; Journal of Power Sources, 146, 723-726,
2005.
【18】Yasuhiro Miki, Daisuke Nakazato, Hiromasa Ikuta,
“Amorphous MoS2 as the cathode of lithium secondary
batteries”, Journal of Power Sources, 54, 508-510,
1995.
【19】Takashi Uchida, Yuji Tanjo, Masataka Wakihara,
“Nickel-Molybdenum Sulfide Ni2Mo6S7.9 as the Cathode
of Lithium Secondary Batteries”, J. Electrochem.
Soc., 137, no. 1, January 1990.
【20】K. Suzuki, T. Iijima, M. Wakihara, “Chromium Chevrel
phase sulfide (CrXMo6S8-X)” as the cathode with long
cycle life in lithium rechargeable batteries”, Solid
State Ionics, 109, 311-320, 1998.
【21】C. C. Torardi, C. R. Miao, M. E. Lewittes; “High
Lithium Capacity MXV2O5AY‧nH2O for Rechargeable
Batteries”, Journal of Solid State Chemistry, 163,
93-99, 2002.
【22】Yong Top Kim, Gopukumar, Kwang Burn Kim; “Novel
synthesis of high-capacity cobalt vanadate for use in
lithium secondary cells”, Journal of Power Sources,
112, 504-508, 2002.
【23】Atef Y. Shenouda; “Structure and electrochemical
behavior of lithium vanadate materials for lithium
batteries”, Electrochimica Acta, 51, 5973-5981, 2006.
【24】守吉佑介,植松敬三,伊熊泰郎;“Ceramics no 燒結”;株
式會社;p. 35-64。
【25】水恭惟谷,尾崎義治,木村敏夫;“工業陶瓷製程”;復漢出
版社;p. 99-128。
【26】謝佩芫;“以化學共沉法製備鋰鋁錳(鎳、鈷)氧化物及其性質
研究”;國立成功大學化學工程研究所碩士論文(2003)。
【27】吳朗;“電子陶瓷介電”;全欣資料圖書;p. 43-125。
【28】Chikazumi Soshin; “Physics of Magnetism”; John
Wiley and Sons,
37~109, 1985
【29】張昫,李學養 譯;“磁性物理學”;聯經出版事業公司;p.
3-15。
【30】John A. Dean; “Lange’s Handbook of Chemistry”;
Fifteenth edition, Mc Graw Hill.
【31】E. A. El-Sharkawy, S. A. El-Hakam, S. E. Samra;
“Effect of thermal treatment on the various
properties of iron(III)-aluminum(III) coprecipitated
hydroxide system”; Materials Letters, 42, 331-338,
2000.
【32】Ali A. Mirzaei, Hamid R. Shaterian, Mostafa Habibi;
“Characterisation of copper-manganese oxide
catalysts: effect of precipitate ageing upon the
structure and morphology of precursors and
catalysts”; Applied Catalysis A: General, 253, 499-
508, 2003.
【33】Ronald Gibala, Matthews Tirrell, Charles A. Wert;
“Fundamentals of Ceramics”; McGRAW-HILL SERIES IN
MATERIALS SCIENCE AND ENGINEERING..
【34】Yuan Gao, J. R. Dahn; “Correlationbetween the growth
of the 3.3V discharge plateau and capacity fading in
Li1-XMn2-XO4 materials”; Solid State Ionics, 84, 33-
40, 1996.