簡易檢索 / 詳目顯示

研究生: 林士淵
Lin, Shih-Yuam
論文名稱: 以電子束蒸鍍技術製作之AZO/Ag/AZO多層膜的光電性質研究
Investigation of optical and electrical properties of Al-doped ZnO/Ag/Al-doped ZnO multilayer films deposited by electron beam evaporation technique
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 108
中文關鍵詞: 多層膜透明電極鋁摻雜氧化鋅氧化鋅
外文關鍵詞: Multilayer, Transparent electrode, AZO, ZnO
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中以電子束蒸鍍技術製作AZO/Ag/AZO多層結構的低電阻透明電極,並對於奈米尺度的Ag與AZO鍍膜光電性質進行探討。藉由實驗中的分析可知,利用電子束蒸鍍製作出最薄的連續金屬銀薄膜厚度約為11nm,在兼顧導電性為前提下,此時金屬夾層對可見光的吸收最小。以此結果為基礎,所製作出的多層結構具有極佳的光電性質,可見光區的穿透度約85%,片電阻為7.70Ω/sq。而在經過退火處理後,藉由界面缺陷的消除可以更進一步改善多層結構的光電性質,可見光區的穿透度約90%,片電阻為5.17Ω/sq。

    In this paper, a ZnO:Al/Ag/ZnO:Al multilayer system for the transparent electrodes having lower electrical resistance was prepared by electron beam evaporation method. The optical and electrical performance of an Ag and ZnO:Al single layer films with nano-dimensions was investigated. The smallest thickness of the continuous single layer Ag film that could be deposited on AZO surface by electron beam evaporation is approximately 11 nm. Based on these studies, a high quality transparent electrode, having sheet resistance as low as 7.70 ohm/sq and high transmittance of 85% at 450 nm, was obtained. After annealing in air, sheet resistance of multilayer became as low as 5.17 ohm/sq and high transmittance of 90% at 480 nm.

    總目錄 中文摘要……………………………………………………………………I 英文摘要…………………………………………………………………...II 致謝………………………………………………………………………...III 總目錄……………………………………………………………………...IV 圖目錄……………………………………………………………………..VII 表目錄……………………………………………………………………....X 第一章、緒論 1.1 前言…………………………………………………………………….1 1.2 研究動機……………………………………………………………….2 1.3 研究目標……………………………………………………………….3 第二章、理論基礎與前人研究…………………………………….……...4 2.1 電子束蒸鍍系統與原理……………………………………….……….5 2.2 蒸鍍靶材的製作技術…………………………………………….…....10 2.3 TCO透明導電薄膜………………………………………………….…16 2.3.1 TCO的光學原理…………………………………………………16 2.3.2 TCO的導電原理…………………………………………………23 2.3.3 AZO透明導電膜的光電性質……………………………………27 2.4 D/M/D結構的光學原理………………………………………………..31 第三章、實驗方法與步驟………………………………………………...37 3.1 實驗流程……………………………………………………………….37 3.2 AZO靶材的製作……………………………………………………….37 3.3 AZO靶材性質分析……………………………………………………..40 3.3.1 AZO靶材熱分析………………………………………………….40 3.3.2 AZO靶材收縮率與電性量測…………………………………….40 3.3.3 AZO靶材粉晶X-ray繞射分析…………………………………..41 3.4 AZO/Ag/AZO薄膜的製作及熱處理條件……………………………..42 3.4.1 鍍膜設備…………………………………………………………42 3.4.2 玻璃基板的準備…………………………………………………45 3.4.3 AZO單層薄膜製作………………………………………………46 3.4.4 金屬銀夾層製作條件……………………………………………47 3.4.5 多層膜熱處理條件………………………………………………47 3.5 AZO/Ag/AZO薄膜性質分析…………………………………………..48 3.5.1 膜厚量測…………………………………………………………48 3.5.2 光學性質量測……………………………………………………48 3.5.3 薄膜電性量測……………………………………………………49 3.5.4 微結構觀察………………………………………………………50 3.5.5 結晶型態分析……………………………………………………50 3.5.6 X光光電子能譜化學鍵結分析.…………………………………51 第四章、結果與討論………………………………………………………52 4.1 AZO蒸鍍靶材的性質………………………………………………….52 4.1.1 燒結溫度對AZO靶材收縮率與電性的影響…………………..52 4.1.2 固溶效應…………………………………………………………56 4.2 基板溫度對於AZO膜光電性質的影響……………………………...61 4.2.1 鍍膜速率………………………………………………………....62 4.2.2 薄膜光電性質……………………………………………………64 4.2.3 微結構觀察……….……………………………………………...67 4.2.4 結晶型態分析……………………………………………………72 4.2.5 成分分析…………………………………………………………75 4.3 AZO/Ag/AZO多層膜的製作………………………………………….81 4.3.1 Ag/AZO雙層結構的光電性質………………………………….81 4.3.2 AZO/Ag/AZO多層膜的光電性質………………………………92 4.3.3 熱處理前後多層膜光電性質的比較……………………………95 第五章、結論……………………………………………………………...99 參考文獻………………………………………………………………….100 作者簡歷………………………………………………………………….108

    參考文獻:
    1. Hiromichi Ohta, Hideo Hosono, Transparent oxide optoelectronics, materialstoday June 2004 p42-51.
    2. D.P. Norton, Y.W. Heo, M.P. Ivill, K.Ip,S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing, materialstoday June 2004 p34-40.
    3. S.K. Park, J.I. Lee, C.S. Hwang, H.Y. Chu, Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition, Jpn. J. Appl. Phys. Vol.44, No. 7 (2005) L242-245.
    4. M.A. Martinez, J. Herrero, M.T. Gutierrez, Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells, Solar Energy Materials & Solar Cells 45 (1997) 75-86.
    5. J.J. Robbins, C.A. Woldena, High mobility oxides: Engineered structures to overcome intrinsic performance limitations of transparent conducting oxides, Appl. Phys. Lett. 83 (2003) 3933-3935.
    6. L.I. Maissel, R. Glang, Handbook of thin film technology, McGRAW-HILL Book Company (1970).
    7. John C.C.Fan, Thomas B.Reed, John B. Goodenough, SAE Preprints, Proceedings of Ninth Intersoc Energy Convers Engineering Conference, August 26–30, 1974, p.341.
    8. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers, Thin Solid Films 326 (1998) 67-71.
    9. 李正中編著 薄膜光學與鍍膜技術 第三版 藝軒出版社 (2002).
    10. G. Leftheriotis, P. Yianoulis, D. Patrikios, Deposition and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications, Thin Solid Films 306 (1997) 92-99.
    11. X. Liu, X. Cai, J. Mao, C. Jin, ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application, Applied Surface Science 183 (2001) 103-110.
    12. Xuanjie Liu, Xun Cai, Jinshuo Qiao, Jifang Mao, Ning Jiang, The design of ZnS/Ag/ZnS transparent conductive multilayer films, Thin Solid Films 441 (2003) 200–206.

    13. K.H. Kima, K.C. Park, D.Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J. Appl. Phys. 81(12) (1997) 7764-7772.
    14. T. Minami, H. Nanto, S. Takata, Optical properties of Aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. Vol.24, No. 8 (1985) L605-607.
    15. Z.C. Jin, I. Hamberg, C.G. Granqvist, Optical properties of sputter-deposited ZnO:Al thin films, J. Appl. Phys. 64(10) (1988) 5117-5131.
    16. B. Szyszka, S. Jger, Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering, Journal of Non-Crystalline Solids 218 (1997) 74-80.
    17. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, M. Wuttig, Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films, J. Appl. Phys. 95(4) (2004) 1911-1917.
    18. I. Sieber, N. Wanderka, I. Urban, I. Dorfel, E. Schierhorn, F. Fenske, W. Fuhs, Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels, Thin Solid Films 330 (1998) 108-113.
    19. D. Song, P. Widenborg, W. Chin, A.G. Aberle, Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering, Solar Energy Materials & Solar Cells 73 (2002) 1-20.
    20. D. Song, A.G. Aberle, J. Xia, Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application, Applied Surface Science 195 (2002) 291-296.
    21. E.G. Fu, D.M. Zhuang, G. Zhanga, Z. Minga, W.F. Yang, J.J. Liu, Properties of transparent conductive ZnO:Al thin films prepared by magnetron sputtering, Microelectronics Journal 35 (2004) 383-387.
    22. K.H. Kim,K.C. Park, D.Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J. Appl. Phys. 81(12) (1997) 7764-7772.
    23. C. Agashe, O. Kluth, G. Schope, H. Siekmann, J. Hupkes, B. Rech, Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications, Thin Solid Films 442 (2003) 167-172.

    24. W.S. Lau, S.J. Fonash, Highly transparent and conducting zinc oxide films deposited by activated reactive evaporation, J. Electron. Mater. 16 (1987) 141-149.
    25. Shi-Yao Suna, Jow-Lay Huang, Ding-Fwu Lii, Effects of H2 in indium–molybdenum oxide films during high density plasma evaporation at room temperature, Thin Solid Films 469–470 (2004) 6-10.
    26. Shi-Yao Suna, Jow-Lay Huang, Ding-Fwu Lii, Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature, J. Mater. Res., Vol. 20, No. 1 (2005) 247-255.
    27. Shi-Yao Suna, Jow-Lay Huang, Ding-Fwu Lii, Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation, J. Vac. Sci. Technol. A 22(4) (2004) 1235-1241.
    28. Cheng-Chung Lee, Shang-Hui Chen, and Cheng-chung Jaing, Optical monitoring of silver-based transparent heat mirrors, Applied Optics vol. 35, No. 28 (1996).
    29. 行政院國家科學委員會, 真空技術與應用, 精密儀器發展中心出版(2001).
    30. Jiaping Han, P.Q. Mantas, A.M.R. Senos, Densification and grain growth of Al-doped ZnO, J. Mater. Res., Vol. 16, No. 2, Feb 2001 459-468.
    31. J. Han, P.Q. Mantas, A.M.R. Senos, Effect of Al and Mn doping on the electrical conductivity of ZnO, Journal of the European Ceramic Society 21 (2001) 1883-1886.
    32. 楊明輝, 金屬氧化物透明導電材料的基本原理, 工業材料, 第179期(2001).
    33. L. Gupta, A. Mansingh and P. K. Srivastava: Band gap narrowing and the band structure of tin-doped indium oxide films. Thin Solid Films 176, 33 (1989).
    34. R. Stuck: In2O3(Sn) and SnO2(F) films-Application to solar energy conversion, Part II-Electrical and optical properties. Mat. Res. Bull. 14, 163 (1979).
    35. K. L. Chopra, S. Major and D. K. Pandya: Transparent conductors-A status review. Thin Solid Films 102, 1 (1983).

    36. I. Hamberg and C. G. Granqvist: Evaporated Sn-doped In2O3 films-Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 (1986).
    37. C. Kittel, Introduction to solid state physics, 7th ed. (John Wiley & Sons, Inc., New York, USA, 1996), pp. 156-158.
    38. R. L. Weiher: Electrical properties of single crystals of indium oxide. J. Appl. Phys. 33, 2834 (1962).
    39. J. H. W. De Wit, G. Van. Unen and M. Lahey: Electron concentration and mobility in In2O3. J. Phys. Chem. Solids. 38, 819 (1977).
    40. D. H. Zhang and H. L. Ma: Scattering mechanisma of charge carriers in transparent conducting oxide films. Appl. Phys. A 62, 487 (1996).
    41. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto: Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films. J. Vac. Sci. Technol. A 19, 1636 (2001).
    42. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, and H. Hosono: Phonon scattering in electron transport phenomena of ITO films. Vacuum 59, 492 (2000).
    43. K. Lott, S. Shinkarenko, L. Turn, E. Gorohova, A. Grebennik, A. Vishnjakov, Zinc nonstoichiometry in ZnO, Solid State Ionics 173 (2004) 29-33.
    44. S. Takata, T. Minami, H. Nanto, The stability of Al-doping ZnO transparent electrodes, Thin Solid Films 135 (1986) 183-187.
    45. P Bonasewicz, W. Hirschwald, G. Neumann, The influence of incongruent decomposition and oxygen chemisorption on temperature and pressure dependence of the conductivity of zinc oxide films, Applied Surface Science 28 (1987) 135-146.
    46. M.S. Castro, C.M. Aldao, Effects of the sintering temperature on the oxygen adsorption in ZnO ceramics, Journal of the European Ceramic Society 19 (1999) 511-515.
    47. Y. Aoshima, M. Miyazaki, K. Sato, Y. Akao, S. Takaki, K. Adachi, Development of silver-based multilayer coating electrodes with low resistance for use in flat panel displayers, Jpn. J. Appl. Phys. Vol.39 (2000) 4884-4889.
    48. E. Ando, M. Miyazaki, Moisture degradation mechanism of silver-based low-emissivity coatings, Thin Solid Films 351 (1999) 308-312.

    49. M. Miyazaki, E. Ando, Durability improvement of Ag-based low-emissivity coatings, Journal of Non-Crystalline Solids 178 (1994) 245-249.
    50. M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering, J. Am. Ceram. Soc., 59 No. 1-2, p4-8.
    51. H. Ryoken, I. Sakaguchi, N. Ohashi, T. Sekiguchi, S. Hishita, H. Haneda, Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method, J. Mater. Res., Vol. 20, No. 10 (2005) 2866-2872.
    52. E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 93(1954) p.632-633.
    53. T. S. Moss, The Interpretation of the Properties of Indium Antimonide, Phys. Soc. London Sect. B, 67(1954) p.775-782.
    54. J. C. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phy. Lett. 26,693–695 (1974).
    55. J. C. C. Fan and F. J. Bachner, “Transparent heat mirrors for solar-energy applications,” Appl. Opt. 15, 1012–1017 (1976).
    56. C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mat. 6, 1–41 (1981).
    57. T. Eisenhammer, M. Lazarov, M. Leutbecher, U. Schoffel, and R. Sizmann, “Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors,” Appl. Opt. 32, 6310–6315 (1993).
    58. Y.C. Liu, J.H. Hsieh, S.K. Tung, Extraction of optical constants of zinc oxide thin films by ellipsometry with various models, Thin Solid Films 510, 1-2 (2006) 32-38.
    59. Y.C. Liu, S.K. Tung, J.H. Hsieh, Influence of annealing on optical properties and surface structure of ZnO thin films, Journal of Crystal Growth 287, 1 (2006) 105-111.
    60. Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay and Z. Sun, Refractive indices of textured indium tin oxide and zinc oxide thin films, Thin Solid Films 510, 1-2 (2006) 95-101.
    61. K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim, ITO/Ag/ITO multilayer films for the application of a vary low resistance transparent electrode, Thin Solid Films 341 (1999) 152-155.

    62. A. Klppela, W. Kriegseisa, B.K. Meyera, A. Scharmanna, C. Daubeb, J. Stollenwerkb, J. Trube, Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties, Thin Solid Films 365 (2000) 139-146.
    63. A. Klppel, B. Meyer, J. Trube, Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems, Thin Solid Films 392 (2001) 311-314.
    64. Y.S. Jung, Y.W. Choi, H.C. Lee, D.W. Lee, Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures, Thin Solid Films 440 (2003) 278–284.
    65. Y. Aoshima, M. Miyazaki, K. Sato, Y. Akao, S. Takaki, K. Adachi, Improvement of Alkali Durability of silver-based multilayer coatings for use in flat panel displays, Jpn. J. Appl. Phys. Vol.40 (2001) 4166-4170.
    66. B.V. L’vov, V.L. Ugolkov, F.F. Grekov, Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method, Thermochimica Acta 411 (2004) 187-193.
    67. B.V. L’vov, A.V. Novichikhin, Quantitative interpretation of the evaporation coefficients for the decomposition or sublimation of some substances in vacuo, Thermochimica Acta 290 (1997) 239-251.
    68. W.M. Shaheen, Nasr-Allah M. Deraz, M.M. Selim, Effect of ZnO doping on surface and catalytic properties of manganese oxides supported on alumina, Materials Letters 52 (2002) 130-139.
    69. Tariq Quadir, Dennis W. Readey, Microstructure development of zinc oxide in hydrogen, J. Am. Ceram. Soc., 72 [2] (1989) 297-302.
    70. H.Z. Wu, K.M. He, D.J. Qiu, D.M. Huang, Low-temperature epitaxy of ZnO films on Si(001) and silica by reactive e-beam evaporation, Journal of Crystal Growth 217 (2000) 131-137.
    71. M. Berber, V.Bulto, R. Kliβ, H. Hahn, Transparent nanocrystalline ZnO films prepared by spin coating, Scripta Materialia 53 (2005) 547-551
    72. Y. Igasaki, H. Saito, Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire (1-210), J. Appl. Phys. 69(4) (1991) 2190-2195.
    73. R.B.H. Tahar, Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol-gel process, Journal of the European Ceramic Society 25 (2005) 3301-3306.

    74. Woon-Jo Jeong, Gye-Choon Park, Electrical and optical properties of ZnO thin film as a function of deposition parameters, Solar Energy Materials & Solar Cells 65 (2001) 37-45.
    75. S. Ray, R. Das, A.K. Barua, Performance of double junction a-Si solar cells by using ZnO:Al films with different electrical and optical properties at the n/metal interface, Solar Energy Materials & Solar Cells 74 (2002) 387-392.
    76. H.T. Cao, Z.L. Pei, J. Gong, C. Sun, R.F. Huang, L.S. Wen, Transparent conductive Al and Mn doped ZnO thin films prepared by DC reactive magnetron sputtering, Surface and Coatings Technology 184 (2004) 84-92.
    77. S.S. Lin, J.L. Huang, P. Sajgalik, The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere, Surface and Coatings Technology 185 (2004) 254-263.
    78. H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay, Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique, Journal of Crystal Growth 268 (2004) 596–601.
    79. B.Y. Oh, M.C. Jeong, W. Lee, J.M. Myoung, Properties of transparent conductive ZnO:Al films prepared by co-sputtering, Journal of Crystal Growth 274 (2005) 453-457.
    80. D.J. Qiu, P. Yu, H.Z. Wu, Well-aligned ZnO nanocolumns grown by reactive electron beam evaporation, Solid State Communications 134 (2005) 735–739.
    81. J. Mass, P. Bhattacharya, R.S. Katiyar, Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition, Materials Science and Engineering B103 (2003) 9-15.
    82. J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, Journal of Applied Physics, Vol. 48, No. 8 (1977) p3524-3531.
    83. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Applied Surface Science 158 (2000) 134–140.
    84. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films, Thin Solid Films 280 (1996) 20-25.

    85. W.C. Huang, J.T. Lue, Quantum size effect on the optical properties of small metallic particles, Physical Review B 49(24) (1994) 17279-17290.
    86. D.R. Sahu, S.Y. Lin, J.L. Huang, ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode, Applied Surface Science, In Press, Available online 13 October 2005.
    87. M. Tului, F. Arezzo, L. Pawlowski,Optical properties of plasma sprayed ZnO+Al2O3 coatings, Surface and Coatings Technology 179 (2004) 47–55

    下載圖示 校內:立即公開
    校外:2006-07-24公開
    QR CODE